Уравнение Эйлера
Исследуем на экстремум функционал: для решения задачи Эйлера. Для начала найдем вариацию функционала по трем этапам (см. вопрос №5). Получим:
. Полученный функционал является линейным. Теперь применим условие экстремума (): - это основная лемма вариационного исчисления, т.е. если мы имеем некий функционал равный нулю при любом , то и . Нужно привести условие экстремума к виду этой леммы, т.е. при Преобразуем выражение (1) и получим:
Мы получили дифференциальное уравнение относительно Это уравнение Эйлера, которое позволяет решить задачу Эйлера. Интегральные кривые уравнения Эйлера называют экстремалями.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Поиск по сайту:
|