АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнение Эйлера-Пуассона

Читайте также:
  1. E) Для фиксированного предложения денег количественное уравнение отражает прямую взаимосвязь между уровнем цен Р и выпуском продукции Y.
  2. IV. УРАВНЕНИЕ ГАМЛЕТА
  3. V2: Волны. Уравнение волны
  4. V2: Уравнение Шредингера
  5. Адиабатический процесс. Уравнение адиабаты (Пуассона). Коэффициент Пуассона.
  6. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЕ ТЕПЛОВОГО БАЛАНСА
  7. В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени
  8. В простом случае обычное дифференциальное уравнение имеет вид
  9. В этом случае уравнение Эйлера принимает вид
  10. Влияние температуры на константу равновесия. Уравнение изобары
  11. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона
  12. Волна вероятности. Уравнение Шредингера

Рассмотрим задачу Эйлера-Пуассона. Исследуем на экстремум функционал

Где функцию F можно считать дифференцируемой раза по всем аргументам, и будем предполагать, что граничные условия имею вид:

Т.е. в граничных точках заданы не только значения функции, но и ее производных до порядка включительно. Находим экстремум по трем правилам, и получаем, что на кривой, реализующей экстремум:

В силу основной леммы вариационного исчисления:

Итак, функция реализующая экстремум исходного функционала должна быть решением уравнения

.

Это дифференциальное уравнение порядка носит название Эйлера-Пуассона, а его интегральные кривые называют экстремалями рассматриваемой вариационной задачи. Общее решение этого уравнения состоит из 2 n произвольных постоянных, которые определяются, вообще говоря, из начальных условий.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)