|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
МЕТОД ИСКУССТВЕННОГО БАЗИСА
Данный метод применяется, если система линейных ограничений содержит равенства, но не является системой из базиса.
Пример:
Вспомним условия применения симплекс-метода: правые части неотрицательны, присутствуют базисные переменные. Первое условие выполняется, а второе выполняется лишь частично: базисными переменными являются только
Добавим искусственную базисную переменную
В связи с этим изменится целевая функция:
Т. е. искусственные базисные переменные у нас добавляются в целевую функцию с отрицательным знаком и при коэффициенте
Теперь можем строить нашу симплекс-таблицу. Отличием от обычной в ней будет наличие строки и столбца
Пересчёт ведём по строке
Выберем ключевой элемент.
После первого зануления переменная
На этом этапе таблица оптимальна. Запишем полученный план:
Задача будет неразрешима, если в столбце
Важным отличием данного метода является то, что базисные переменные являются искусственными – их добавление в левую часть уравнения не влияет на знак равенства.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |