Арифметические операции с пределами
Теорема 1: Пусть , а , тогда
Док-во: По теореме о представлении функций, имеющих предел: f(x)=A+a(x), где a(x) – б/м при x®x0, а j (x)=B+b(x), где b(x) ‒ б/м при x®x0.
, как сумма двух б/м.
Ч.т.д.
Теорема 2: Пусть , а , тогда .
Док-во: По теореме о представлении функций, имеющих предел: f(x)=A+a(x), где a(x) – б/м при x®x0, а j (x)=B+b(x), где b(x) ‒ б/м при x®x0.
f(x)·j (x)= (A±a(x))·(B+b(x))=A·B+A·b(x)+ a(x)·B+ a(x)·b(x)=A·B, так как A·b(x) и a(x)·B и a(x)·b(x) стремятся к нулю при x®x0 по свойствам б/м. Переходя к пределу при x®x0 получаем требуемое.
Ч.т.д.
Теорема 3: Пусть , а , тогда , где B¹0.
Доказывается теорема аналогично теоремам 1 и 2.
Следствие: , где C-const.
Неопределенности. Если не применимы основные теоремы о пределах, свойства б/м и б/б, то возникают неопределенности вида: , , (0·¥), (1¥), (00), (¥0), (¥-¥).
Рассмотрим три вида неопределенности: , (¥-¥), .
Пример. Вычислить пределы.
1) = =
2)
3)
от неопределенности избавимся следующим образом: разложим числитель и знаменатель на множители и сократим.
4)
чтобы избавиться от иррациональности, надо умножить и поделить на сопряженное выражение.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Поиск по сайту:
|