АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теоремы о непрерывных функциях

Читайте также:
  1. Базовые теоремы
  2. Вектор электрического смещения ( электрической индукции) D. Обобщение теоремы Гаусса для вещества.
  3. Выбрать разрешающий элемент (правило предыдущей теоремы), сделать шаг жордановых исключений. Получить новое опорное решение. Вернуться на шаг 2.
  4. Вычисление непрерывных случайных величин.
  5. Глава 1. Теоремы о функциональных уравнениях.
  6. Две фундаментальные теоремы экономики благосостояния
  7. Доказательство (теоремы).
  8. Используя теоремы сложения и умножения, а также формулы комбинаторики
  9. Леммы и теоремы двойственности
  10. Линейная оболочка системы векторов. Теоремы о базисе и размерности линейной оболочки.
  11. Некоторые теоремы о дифференцируемых функциях
  12. О НЕКОТОРЫХ СВОЙСТВАХ НЕПРЕРЫВНЫХ СИГНАЛОВ

 

Теорема 1. (о сохранении знака непрерывной функции).

Пусть функция f(x) определена и непрерывна на (а;b) и в точке х0 значение функции f(x0) 0. Тогда существует окрестность точки x0, в которой f(x) сохраняет знак.

 

Теорема 2. (I т. Больцано-Коши).

y
Пусть функция f(x) определена и непрерывна на [а;b] и принимает на концах отрезка значения разных знаков. Тогда существует такая точка с [а;b], что f(с)=0.

x
f(a)
f(b)
b
 
c
a

 


Замечание 1: Если выполняются условия этой теоремы, то график непрерывной функции обязательно пересечен осью ох.

Замечание 2: Если отказаться от условия непрерывности, то теорема не выполняется.

 

Теорема 3. (II т. Больцано-Коши о промежуточных значениях).

Пусть функция f(x) определена и непрерывна на [а;b], f(a)=А, f(b)=В. Тогда f(x) принимает все промежуточные значения между А и В.

 

Лемма о вложенных отрезках:

Дана последовательность вложенных отрезков, длины которых стремятся к нулю, т.е.:

[a1;b1] [a2;b2] [a3;b3] [an;bn] ….

Тогда существует единственная точка, принадлежащая всем отрезкам.

 


a1 a2 a3... an… bn... b3 b2 b1

 

Рассмотрим последовательность левых концов:

{an} возрастает и ограничена сверху числом b1.

По теореме о пределе монотонной и ограниченной последовательности существует .

Рассмотрим последовательность правых концов:

{bn} убывает и ограничена снизу числом an

Рассмотрим С1 – С2= - = С1 = С2 Существует единственная точкка, принадлежащая всем отрезкам.

Теорема 4. (I т. Вейерштрасса).

Пусть функция f(x) непрерывна на [а;b]. Тогда f(x) ограничена на [а;b].

Док-во:

Предположим противное: функция f(x) не ограничена на [а;b]. Разделим [а;b] пополам и выберем ту часть, на которой f(x) не ограничена. Разделим эту часть пополам и выберем половину, на которой функция не ограничена и т.д.

Получим последовательность вложенных отрезков, длины которых стремятся к нулю.

Тогда по лемме о вложенных отрезках существует единственная точка С, принадлежащая всем отрезкам, такая, что в окрестности точки С функция f(x) не ограничена.

По условию теоремы f(x) непрерывна на [а;b] f(x) непрерывна в точке С.

По первому определению непрерывности .

По определению предела: такое, что из неравенства

Положим =1 .

Выберем М=max() f(x) ограничена в окрестности точки С.

Ч.т.д.

Теорема 5. (II т. Вейерштрасса).

Пусть функция f(x) непрерывна на отрезке [а;b]. Тогда она принимает на этом отрезке свое наибольшее и наименьшее значения.

 

x
y
fнаиб
b
a
fнаим

 

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)