Правила вычисления производной
1. .
Док-во:
Дадим x приращение Dx, . Тогда функция получит приращение Dy. Отсюда . Так как , то . Þ (C)¢=0.
Ч.т.д.
2. Если функции u и v имеют конечные производные, то производная суммы (разности) равна сумме (разности) производных: .
Док-во:
Дадим x приращение Dx, . Тогда функция получит приращение . Отсюда = = .
Þ = = .
Ч.т.д.
3. Если функции u и v имеют конечные производные, то производная произведения находится по формуле: .
Доказывается аналогично второму.
Следствие: Константу можно выносить за знак произведения: .
4. Если функции u и v имеют конечные производные, то производная частного находится по формуле: , где v¹0.
Таблица простейших производных.
Степенные функции
|
|
|
|
| Показательные функции
| Логарифмические функции
|
|
|
|
| Тригонометрические функции
|
|
|
|
|
Обратные тригонометрические функции
|
|
|
|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Поиск по сайту:
|