АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Необходимое и достаточное условие существования предела функции

Читайте также:
  1. I. Деньги и их функции.
  2. I. Правила поведения в условиях вынужденного автономного существования.
  3. Ms Excel: мастер функций. Логические функции.
  4. SALVATOR создает Знания-Образы, когнитивные имитационные модели сознания, расширяющие человеческие возможности и защитные функции.
  5. TARIFCND (Л. Условие тарифа)
  6. А) Ведущая и подчиненная функции.
  7. А) Формы существования
  8. Абстрактные классы и чистые виртуальные функции. Виртуальные деструкторы. Дружественные функции. Дружественные классы.
  9. Аксиома 2.3. (Условие взаимного влияния)
  10. Алгебраическое интерполирование функции.
  11. Арифметические операции с пределами.
  12. Асимптоты графика функции.

 

Теорема о представлении функции, имеющей предел:

Для того чтобы число Абыло пределомфункции f(x) при x®x0 , необходимо и достаточно, чтобы в некоторой окрестности точки x0 f(x) была представима следующим образом: f(x)=A+a(x), где a(x) – б/м при .

Док-во:

Необходимость. Пусть

Þ" >0 $ d>0: из |x-x0| <d следует неравенство |f(x)-A| < .

Это неравенство означает, что f(x)–A=a(x) ‒ б/м при x®x0 (по определению б/м). Отсюда f(x)=A + a(x).

Достаточность. В некоторой окрестности точки x0 функция представима в виде: f(x) = A+a(x), где a(x) – б/м при x®x0. Þ a(x)=f(x)–A – б/м, то есть по определению: " >0 $ d>0 из неравенства |x-x0| <d Þ|f(x) – A|< .

Последнее неравенство означает, что .

Ч.т.д.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)