АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Производная функции одной переменной

Читайте также:
  1. F. Метод, основанный на использовании свойства монотонности показательной функции .
  2. I Психологические принципы, задачи и функции социальной работы
  3. I. Деньги и их функции.
  4. I. Дифракция Фраунгофера на одной щели и определение ширины щели.
  5. I. Функции
  6. I. Функции эндоплазматической сети.
  7. II. Основные задачи и функции
  8. II. Основные задачи и функции
  9. II. Функции плазмолеммы
  10. III. Предмет, метод и функции философии.
  11. III. Функции и полномочия Гостехкомиссии России
  12. IV. Конструкция бент-функции

 

Определение: Пусть функция y=f(x) определена в точке x0 и некоторой ее окрестности. Дадим x0 приращение Dx так, чтобы точка принадлежала указанной окрестности. Тогда функция получит приращение Dy. .

Если существует предел отношения приращения функции к приращению аргумента, когда последний стремится к нулю, то он называется производной функции f(x) в точке x0.

.

Обозначают производную , , y', , .

Замечание: Если изменить x0, то будет изменяться и производная функции в точке x0, следовательно, производная функции тоже является функцией.

Пример: Найти по определению производную функции y=x2.

Возьмем произвольную точку x, дадим приращение Dx, x®x+Dx. Функция получит приращение Dy: = = = .

Рассмотрим предел = =

Итак, производная .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)