Производная функции одной переменной
Определение: Пусть функция y=f(x) определена в точке x0 и некоторой ее окрестности. Дадим x0 приращение Dx так, чтобы точка принадлежала указанной окрестности. Тогда функция получит приращение Dy. .
Если существует предел отношения приращения функции к приращению аргумента, когда последний стремится к нулю, то он называется производной функции f(x) в точке x0.
.
Обозначают производную , , y', , .
Замечание: Если изменить x0, то будет изменяться и производная функции в точке x0, следовательно, производная функции тоже является функцией.
Пример: Найти по определению производную функции y=x2.
Возьмем произвольную точку x, дадим приращение Dx, x®x+Dx. Функция получит приращение Dy: = = = .
Рассмотрим предел = =
Итак, производная .
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Поиск по сайту:
|