АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Доказательство. Исследование функций с помощью производных

Читайте также:
  1. Абсолютное доказательство
  2. Арбитражное доказательство модели Модильяни—Миллера
  3. Виды кривых безразличия, их свойства (с доказательством) и виды.
  4. Глава 4. Социальное доказательство.
  5. Доказательство
  6. Доказательство
  7. Доказательство
  8. Доказательство
  9. Доказательство
  10. Доказательство
  11. Доказательство
  12. Доказательство

Исследование функций с помощью производных

Возрастание и убывание функций

 

Теорема 1.

Если во всех точках х некоторого промежутка D производная функции , то функция постоянна на этом промежутке.

Доказательство

Функция удовлетворяет всем условиям теоремы Лагранжа, т.е. для любых точек из промежутка D существует точка такая, что справедлива формула конечных приращений Лагранжа: . По условию теоремы , следовательно, . Отсюда . Это означает, что функция постоянна на этом промежутке, что и требовалось доказать.


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)