АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Доказательство. — матрица оператора в некотором координатном базисе

Читайте также:
  1. Абсолютное доказательство
  2. Глава 4. Социальное доказательство.
  3. Доказательство
  4. Доказательство
  5. Доказательство
  6. Доказательство
  7. Доказательство
  8. Доказательство
  9. ДОКАЗАТЕЛЬСТВО
  10. ДОКАЗАТЕЛЬСТВО
  11. ДОКАЗАТЕЛЬСТВО

Пусть где

— матрица оператора в некотором координатном базисе . Возьмем любой .

Пусть

Запишем формулу связи между координатами х и :

.

Это матричное уравнение запишем в виде системы

(1)

Видим, что тогда и только тогда, когда его координаты удовлетворяют системе (1). Следовательно, совпадает с пространством решений системы (1), поэтому где Получаем, что

Задача. Линейный оператор пространства в базисе задан матрицей . Найти образ вектора . Найти ядро, дефект, область значений и ранг .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)