АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теорема. Пусть U(P) и V(P) — векторные пространства над одним и тем же полем Р;

Читайте также:
  1. S-M-N-теорема, приклади її використання
  2. Б1 1.Системы линейных алгебраических уравнений (СЛУ). Теорема Кроникера-Капелли. Общее решение СЛУ.
  3. Базисный минор и ранг матрицы. Теорема о базисном миноре
  4. Билет 22Понятие евклидова пространства, неравенство Коши-Буняковского. Теорема Кронекера Капелли.
  5. Билет 5 Теорема Безу и следствия из неё. Основная теорема алгебры.
  6. Внешние эффекты (экстерналии). Теорема Коуза.
  7. Внешние эффекты трансакционные издержки. Теорема Коуза
  8. Внешние эффекты, их виды и последствия. Теорема Коуза
  9. Внешние эффекты. Теорема Коуза.
  10. Внешние эффекты. Теорема Коуза.
  11. Вопрос 1 теорема сложения вероятностей
  12. Вопрос 24 Теорема Остроградского-Гаусса для электрического поля в вакууме

Пусть U(P) и V(P) — векторные пространства над одним и тем же полем Р;

базис U(P), — произвольные векторы из V(P).

Тогда существует единственное линейное отображение удовлетворяющее условиям (1)

Доказательство .

Отображение определим равенством

для любых

Отображение удовлетворяет условиям (1).

Например, при получаем и т.д.

Докажем линейность отображения .

По определению отображения

= таким образом, — линейное отображение.

Предположим, что : U® V — это линейное отображение, удовлетворяющее условиям

Для любого вектора

то есть

 

Следствие 1. Пусть U(P), V(P) — векторные пространства, — базис U; и — линейные отображения U в V, такие, что Тогда .


Следствие 2. Пусть — базис V(P), — произвольные векторы из V. Существует единственный линейный оператор удовлетворяющий условиям (1).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)