АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Закони розподілу випадкової величини

Читайте также:
  1. V. Для дискретної випадкової величини Х, заданої рядом розподілу, знайти:
  2. АКУСТИЧНІ ВЕЛИЧИНИ
  3. Біноміальний закон розподілу
  4. Величини
  5. Визначення величини резерва сумнівних боргів на основі класифікації дебіторської заборгованості
  6. Вимірювані величини і методи вимірювань
  7. Випадкові величини та їх розподіл
  8. Випадкові змінні х та у стохастично залежні, якщо зміна однієї з них викликає зміну розподілу другої (умовний розподіл однієї з них залежить від значень другої).
  9. Випадкові події і величини, їх числові характеристики
  10. Відносні статистичні величини, їх види за аналітичною функцією, економічний зміст, методика обчислення та одиниці вимірювання
  11. Властивості емпіричної функції розподілу
  12. Властивості функції розподілу

Законом розподілу випадкової величини називається співвідношення, що встановлює зв'язок між можливими значеннями випадкової величини і відповідними їм вірогідностями.

Найпростішою формою завдання такого закону служить таблиця, в якій перераховані можливі значення випадкової величини і відповідні їм ймовірності.

Таблиця 2.3-Значення випадкової величини і відповідні їм ймовірності

Х1 Х2 Х3 ... Хn Разом
Р1 P2 P3 ... Pn =1

Щоб надати ряду розподілу наочний вигляд, будують його графічне зображення у вигляді гістограми, полігону, кумуляти і огіви.

Табличний розподіл можливих значень випадкової величини і відповідних їй ймовірностей, графічне зображення кривих розподілу і аналітичний опис вказаної залежності є форми закону розподілу.

Криві розподілу можуть бути самої різної форми. Проте серед них слід виділити так звані одновершинні криві, що часто зустрічаються.

В економічних дослідженнях симетричні розподіли зустрічаються рідко. Набагато частіше вершина кривої знаходиться не в центрі, а дещо зміщена. Зустрічається також двопіковий розподіл. Його наявність свідчить про те, що розглядається неоднорідна сукупність.

Теоретичними розподілами в економічних дослідженнях головним чином закон є Пуассона, показовий, біномінальний, Стьюдента, - квадрат, Лапласа, нормальний та ін.

Нормальний закон розподілу реалізується для випадкових величин, які формуються під сумарною дією багатьох незалежних поміж собою дрібних причин, дія кожної з яких мала в порівнянні із загальним результатом.

У математичній статистиці нормальний розподіл відіграє роль стандарту, з яким порівнюються інші розподіли.

Формула нормальної кривої має наступний вигляд:

, (2.15)

де Х - випадкова величина;

- середнє арифметична або математичне очікування;

σх - середнє квадратичне відхилення;

π =3,14159, е=2,71828 - відомі константи.

Крива Гаусса - Лапласа має горбоподібний вигляд і симетрично розташовується відносно вертикальної прямої. Центр угрупування випадкової величини і форму нормальної кривої визначають числові характеристики і σх.

При Х= функція має максимум, рівний

. (2.16)

Симетрія кривої Х= вважається основною властивістю нормального розподілу: однакові відхилення значення випадкової величини від її середнього в обидві сторони зустрічаються однаково часто.

 
 

 

 


Рис. 2.1 - Крива Гаусса - Лапласа

При збереженні своєї загальної форми крива розподілу нормального закону може мати різний ступінь пологості й крутизни залежно від значення σх.

У математико-статистичних дослідженнях, незалежно від розмірності випадкової величини Х, може бути визначена відносна частота.

По правому 3σ величина абсолютного відхилення випадкової величини від середнього по вибірці менше ± 3σх з вірогідністю 0,997. Лише 0,3% всього Хi числа спостережень виходить з "трисигмових меж". В інтервалі від Х-σх до Х+σх знаходиться 68,3% спостережень, в інтервалі від Х-2σх до Х+2σх - 95,5% спостережень. Як було сказане вище, максимум

. (2.17)

Оскільки площа диференційованої функції нормального розподілу дорівнює одиниці, то зі зростанням σх максимальна ордината нормальної кривої убуває, а сама крива стає більш пологою. Навпаки, з убуванням σх нормальна крива стає більш гостроверхою.

При =0 і ух=1 нормальну криву називають нормованою:

. (2.18)

Величина табульована і може бути визначена з відповідних математико-статистичних таблиць (диференціальна функція Лапласа). У цих таблицях наведені функції f (х), відповідні позитивним значеннях Х. Для від’ємних Х користуються тими ж таблицями, оскільки функція f (х) парна, тобто f (-х)=f (x). У таблиці наводяться значення f (х) для Х від 0 до 4 через 0,01.

Для того, щоб можна було користуватися готовими таблицями, потрібно криву нормального розподілу привести до стандартної форми. Стандартизація полягає в переході від випадкової величини Х, має математичне очікування і середньоквадратичне відхилення σх, до допоміжної величини називаної центрованим і нормованим відхиленням:

t= чи ∆Х=t σх (2.19)

Використовуючи відповідні таблиці значень, будують таблицю стандартизованого розподілу вірогідності.

Якщо на вісь абсцис нанести значення t, а на вісь ординат вірогідність P(t), то графічне зображення дає нормальну криву. Фізичне значення t означає, на скільки середньоквадратичних відхилень σх змінюється значення випадкової величини від її середнього значення .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)