|
|||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ЗАДАЧА ПОКРЫТИЯ СХЕМ НАБОРОМ КОНСТРУКТИВНЫХ МОДУЛЕЙВ результате решения задачи покрытия каждый элемент схемы привязывается к некоторому конструктивному модулю из набора Q={Q1, Q2, …,Qm}. Математическая постановка задачи покрытия зависит от типа конструктивных модулей набора. Различают 3 типа конструктивных модулей: 1) Каждый модуль содержит базовые логические элементы одного типа, при этом все входы и выходе логических элементов являются выводами модуля. Например: 2) Тоже что и предыдущий тип, однако в одном конструктивном модуле могут содержаться разнотипные логические элементы. Модули 1-го и 2-го типов называются модулями с несвязанными элементами. 3) Конструктивный модуль в общем случае содержит связанные между собой разнотипные элементы и не все входные и выходные выводы элементов имеются на внешних контактах конструктивного модуля. Рассмотрим математическую постановку задачи покрытия схемы конструктивными модулями с несвязанными элементами (1-го и 2-го типов). Обозначим через bi количество логических элементов ti типа, содержащихся в функционально-логической схеме (ФЛС). При таком подходе состав ФЛС может быть описан матрицей-столбцом: B= || bi || n, где n – число типов логических элементов схемы, bi – число логических элементов ti типа в ФЛС. Будем считать, что каждый тип конструктивного модуля Qj в общем случае содержит несколько типов ti базовых элементов, а весь набор конструктивных модулей Q может быть описан матрицей A= || aij || nxm, где aij – количество базовых логических элементов типа ti в конструктивном модуле типа Qj ( Пример.
В качестве критерия оптимизации будем использовать минимум стоимости покрытия. Обозначим cj стоимость конструктивного модуля Qj. Пусть для покрытия ФЛС необходимо выделить yj конструктивных модулей Qj, тогда в качестве целевой функции можно взять функцию вида:
Будем считать, что каждый тип базового логического элемента схемы может быть реализован как базовый логический элемент того же набора, так и БЛЭ другого типа набора. Например: Обозначим через xki количество логических элементов типа tk, которое идет на покрытие логических элементов схемы типа ti. Возможность замены БЛЭ типа tk на БЛЭ типа ti будем описывать матрицей W =|| wki || nxn, Очевидно, что xki >0 если wki =1. Учитывая введенные обозначения, задачу покрытия можно сформулировать следующим образом: если yj количество требуемых конструктивных модулей типа Qj, а в каждом Qj конструктивном модуле содержится aij элементов типа ti, то Очевидно, что для покрытия всей ФЛС необходимо выполнение следующего условия:
где второе слагаемое – количество логических элементов других типов, которые идут в покрытии на реализацию логических элементов типа ti; последнее слагаемое – количество логических элементов типа ti, которые идут на реализацию логических элементов других типов. Т. о., ставится задача отыскания таких значений yj и xki, удовлетворяющих (**), чтобы обеспечивался минимум целевой функции (*) – стоимости покрытия. На практике используются приближенные методы, опирающиеся на специфику используемых конструктивных модулей. Если имеем дело с несвязанными элементами конструктивного модуля, то здесь в результате определения требуемого числа модулей не осуществляется привязка логических элементов схемы к конструктивным модулям, отсюда появляется возможность оптимизации по другому критерию, в частности по критерию минимума межблочных связей. Пример Q={Q1, Q2, Q3}, t={t1, t2, t3, t4} приведен нами выше. Требуется покрыть ФЛС, описываемую вектором B={ 5, 4, 1, 1 }, заданным набором конструктивных модулей. Блок-схема алгоритма определения требуемого числа конструктивных модулей по критерию минимума стоимости покрытия приведена на рисунке.
Требуемое число корпусов модуля j-го типа определяется из выражения:
Для нашего примера:
Так как a31=0 и a41=0, то в качестве коэффициента Полагаем, что j=2 и вычисляем
j=3 Переходим к
Т.о. имеем Эти данные подставляем в выражение (1) и определяем:
После определения требуемого числа корпусов, можно осуществить привязку элементов к корпусам. Для этого могут быть использованы рассмотренные ранее алгоритмы решения задач компоновки (задачи разбиения). Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |