|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Алгоритм РабинаУвеличение быстродействия в алгоритме Рабина достигается за счёт преимущественного распространения волны в направлении ячейки-цели. В алгоритме Ли, который является реализацией метода динамического программирования, такая целенаправленность отсутствует. Алгоритм Рабина, который реализует метод ветвей и границ, позволяет также, как и алгоритм Ли, находить глобальный оптимум целевой функции (Lmin). Пусть требуется найти путь min длины между ячейками А и В. Рассмотрим некоторую ячейку Сi, включаемую в очередной фронт волны. Значение волновой функции Сi, приписываемое Сi ячейки фронта, определяется из выражения: , где L(I,A) – длина пройденного волной пути из ячейки А в ячейку Сi, а - расстояние между Сi,В в ортогональной метрике. Нетрудно увидеть, что является нижней оценкой пути из Сi в В, полученной в предположении отсутствия препятствий на этом пути. Отсюда, выражение (1) в целом представляет собой нижнюю оценку пути из А в В, проходящую в ячейку Сi. Согласно методу ветвей и границ, оптимальное решение следует искать в подмножестве решений, имеющем наилучшую оценку. В соответствии с этим в сформированном очередном фронте волны выделяют подмножество ячеек с min оценкой 1 и распространение волны на следующем шаге осуществляется из ячеек этого подмножества. Заметим, что для сокращения зоны поиска, распространение волны в алгоритме Рабина осуществляется в первую очередь, из тех ячеек с min оценкой, которые получили эту оценку последними. Последовательность просмотра соседних ячеек та же, что и в алгоритме Ли (например:,,,) - построение пути осуществляется с использованием путевых координат. Эффективность алгоритма Рабина по сравнению с алгоритмом Ли показана на рис.3, на котором для каждой ячейки ДПР указано значение весовой функции Pi. Цифрами в правых углах ячеек обозначена последовательность рассмотрения ячеек на этапе распространения волны. рисунок
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |