АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Построение таблиц истинности и логических функций

Читайте также:
  1. I. Решение логических задач средствами алгебры логики
  2. II. Решение логических задач табличным способом
  3. III. Решение логических задач с помощью рассуждений
  4. III. Статистические таблицы
  5. IV. Далее в этой лабораторной работе необходимо создать и сохранить запрос для отображения средних цен на все товары по таблице «Товары».
  6. IV. Список мифологических имен,
  7. RS-триггеры на логических элементах
  8. А 55. ЗАКОНОМІРНОСТІ ДІЇ КОЛОГИЧЕСКИХ ФАКТОРІВ НА ЖИВІ ОРГАНІЗМИ
  9. А) ПЕРЕВОД ИДИОМ (ФРАЗЕОЛОГИЧЕСКИХ СРАЩЕНИЙ)
  10. Автоматизация функций в социальной работе
  11. Активный запрос на создание таблицы
  12. Актуальность исследования геронтопсихологических проблем

Логическая функция - это функция, в которой переменные принимают только два значения: логическая единица или логический ноль. Истинность или ложность сложных суждений представляет собой функцию истинности или ложности простых. Эту функцию называют булевой функцией суждений f (a, b).

Любая логическая функция может быть задана с помощью таблицы истинности, в левой части которой записывается набор аргументов, а в правой части - соответствующие значения логической функции. При построении таблицы истинности необходимо учитывать порядок выполнения логических операций.

Порядок выполнения логических операций в сложном логическом выражении:

  1. инверсия;
  2. конъюнкция;
  3. дизъюнкция;
  4. импликация;
  5. эквивалентность.

Для изменения указанного порядка выполнения операций используются скобки.

Алгоритм построения таблиц истинности для сложных выражений:

  1. Определить количество строк:

количество строк = 2n + строка для заголовка,

n - количество простых высказываний.

  1. Определить количество столбцов:

количество столбцов = количество переменных + количество логических операций;

    • определить количество переменных (простых выражений);
    • определить количество логических операций и последовательность их выполнения.
  1. Заполнить столбцы результатами выполнения логических операций в обозначенной последовательности с учетом таблиц истинности основных логических операций.

Пример: Составить таблицу истинности логического выражения:

D = А & (B Ú C).

Решение: Ù

  1. Определить количество строк:

на входе три простых высказывания: А, В, С поэтому n=3 и количество строк = 23 +1 = 9.

  1. Определить количество столбцов:
    • простые выражения (переменные): А, В, С;
    • промежуточные результаты (логические операции):
      А - инверсия (обозначим через E);
      B Ú C - операция дизъюнкции (обозначим через F);
      а также искомое окончательное значение арифметического выражения:
      D = А & (B Ú C). т.е. D = E & F - это операция конъюнкции.
  2. Заполнить столбцы с учетом таблиц истинности логических операций.
A B C E F E & F
           
           
           
           
           
           
           
           

 

Построение логической функции по ее таблице истинности:

Попробуем решить обратную задачу. Пусть дана таблица истинности для некоторой логической функции
Z(X,Y):

X Y Z
     
     
     
     

Составить логическую функцию для заданной таблицы истинности.

Правила построения логической функции по ее таблице истинности:


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)