АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Мера различия между гистограммами частот разнесения имен

Читайте также:
  1. B) международным географическим разделением труда
  2. B. метода разделения смеси веществ, основанный на различных дистрибутивных свойствах различных веществ между двумя фазами — твердой и газовой
  3. I. Международно-правовые, законодательные и нормативные акты
  4. I. Противоположность между потребительной стоимостью и меновой стоимостью
  5. IV. Расчет частоты вращения вала двигателя.
  6. V-го Международного фестиваля документального кино «КинЗА»
  7. V. Различие в отношении к прошлому опыту между образами памяти и образами воображения
  8. VI. МЕЖДУНАРОДНАЯ ДЕЯТЕЛЬНОСТЬ ЮЖНОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА
  9. Автогенератор с кварцевым резонатором между коллектором и базой.
  10. Автогенератор с кварцем между коллектором и базой.
  11. Автоматический регулятор частоты вращения
  12. Адаптация международной рекламы к местным национальным условиям

Здесь мы введем меру различия между распределениями Pз=x и Pз=x|A, где A – некоторое локальное событие. Эта мера имеет смысл вероятности того, что реализованное в эксперименте различие между этими двумя распределениями возникнет при гипотезе о правильности данного хронологического списка Х.

Предположим, что рассматриваемый хронологический список Х является результатом некоторого случайного эксперимента. При этом, мы будем считать, что общее количество имен в списке Х и их кратности вхождения в список заранее фиксированы (неслучайны), а порядок имен в списке Х является случайным элементом, который мы обозначим через w_1.

Соответствующее вероятностное пространство обозначим через (W_1, S_1, P_1), где W_1 – множество всех перестановок имен в списке Х; S_1 = 2^W 1, P_1 – некоторая вероятностная мера на S_1, относительно которой мы пока не будем делать никаких предположений.

Таким образом, порядок имен в хронологическом списке Х мы рассматриваем как элементарный исход в вероятностной схеме (W_1, S_1, P_1).

Рассмотрим разбиение списка Х на N глав одинакового объема (Мы предполагаем, что длина списка n делится на N.) Число глав N считаем фиксированным и не зависящим от случая. Как и выше, построим по списку Х, разбитому на N глав, вероятностную схему повторного выбора с возвращением двух элементов списка Х и определим случайную величину з – разнесение выбранных элементов списка (абсолютную величину разности номеров глав, их содержащих).

Соответствующее этой схеме вероятностное пространство (W_2, S_2, P_2) состоит из множества элементарных исходов W_2, которое представляет собой множество пар порядковых номеров выбранных элементов в списке: w_2 = i, j, алгебры событий S_2 = 2^W 2 и равномерного распределения:

P_2(w_2) = 1/n^2 для любого w_2EW_2.

 

Поскольку мера P_2 не зависит от w_1, то итоговое вероятностное пространство (W, S, P) является произведением пространств (W_1, S_1, P_1) и (W_2, S_2, P_2):

 

W = W_1xW_2; S=2^W; P(w)=P(w_1, w_2)=P_1(w_1)xP_2(w_2).

 

На вероятностном пространстве (W, S, P) определена случайная величина з:

 

з(w)=з(w_1, w_2)=з(w_2).

 

Пусть A – некоторое событие из S. Сформулируем предположение о вероятностной мере P_1 (то есть о вероятностном механизме образования порядка имен в правильном хронологическом списке).

 

Предположение. Предположим, что случайная величина з не зависит от события A:

 

Pз=x|A = Pз=x для всех x.

 

Никаких других условий на меру P_1 мы накладывать не будем.

Сделанное предположение зависит от выбора события A. Если в качестве A выбрать локальное событие (определение локальных событий дано выше), то это предположение вытекает (для правильного хронологического списка) из сформулированного выше следствия гипотезы Н_0:

Pз=x|A, з»е = Pз=x|з»е,

где е – радиус затухания зависимости в списке Х.

 

Здесь мы без ограничения общности будем считать, что е=0.

Общий случай сводится к этому простой модификацией вероятностой схемы (W_2, S_2, P_2).

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)