АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Правильный хронологический список имен

Читайте также:
  1. I Выбери правильный ответ
  2. А теперь запишите все самые важные для вас дела, разместив их в порядке приоритетности. Даже простое занесение их в список вызовет у вас чувство уже некоторого контроля над ними.
  3. А теперь, дадим список армянских царей, придуманных Хоренским в соответствии с другим переводом - акад. Ст.Малхасьянцем (Ереван, Хайпетрат, 1961, арм.).
  4. А — правильный прием; б — неправильный прием
  5. Алфавитный список фобий
  6. Библиографический список
  7. Библиографический список
  8. БИБЛИОГРАФИЧЕСКИЙ СПИСОК
  9. Библиографический список
  10. Библиографический список
  11. Библиографический список
  12. Библиографический список

В главе 1 было введено понятие хронологического списка имен, снабженного разбиением на главы и приведены примеры реальных хронологических списков. В настоящем разделе мы рассмотрим задачу проверки гипотезы Н_0 о том, что хронология того или иного хронологического списка имен является правильной.

Уточним понятие правильного списка по сравнению с определением, данным в главе 1. А именно, будем называть хронологию списка имен Х правильной, если список не является результатом размножения и последующего «поблочного тасования» (склейки со сдвигом и локального перемешивания) некоторого другого, более короткого списка Y. В противном случае будем говорить, что список Х содержит дубликаты. Под дубликатами понимаются первоначально одинаковые (при тасовании они могут быть искажены) отрезки различных экземпляров списка Y, содержащиеся в Х (см рис. 17).

Также как и в модельной задаче, мы допускаем возможность случайных искажений каждого из экземпляров списка Y, лежащих в основе списка Х, однако предполагаем, что локальные искажения в удаленных друг от друга частях списков взаимно независимы.

 

2. 2. Сопряженные имена и имена-ровесники.
Математический формализм

Следуя описанной в предыдущем разделе методике, рассмотрим вероятностную схему случайного равновероятного выбора с возвращением двух имен из списка Х и определим случайную величину з – разнесение выбранной пары имен.

Напомним обозначения характеристик списка Х: n – общее число имен в списке Х (с учетом кратности их вхождения в список); m – число различных имен списка Х;

N – число глав списка Х.

Имена списка Х мы будем обозначать буквами a_i, где индекс указывает на порядковый номер данного имени в списке:

X = a_1, a_2,…, a_N.

Обозначим через I множество различных имен списка Х. Это множество состоит из m имен (m «x «N).

Здесь x – целое. Для остальных целых x соответствующая вероятность равна нулю.

Таким образом, для всех списков Х с главами постоянного объема функция f1 одна и та же – это линейно убывающая в промежутке от 1 до N-1 функция.

Доказательство.

Поскольку случайная величина з определяется по номерам глав, содержащих выбранные имена, то можно считать, что выбираются не сами имена, а главы. Так как объем глав по предположению постоянен, то выбор любой главы на первом шаге осуществляется с одинаковой вероятностью равной 1/N. То же верно и для второго шага выбора.

Рассмотрим сначала случай 1 «x «N. В этом случае существует ровно N – x возможностей фиксировать главу с меньшим номером в паре глав, разнесенных на расстояние x в списке. Вторая глава в этой паре имеет номер на x больший, чем первая и этим определяется (по первой) однозначно. Учитывая, что глава с меньшим номером может появиться как на первом, так и на втором шаге выбора, получаем, что общее количество возможностей выбрать пару глав, разнесенных на расстояние x (с учетом порядка выбора), равно 2(N – x). Вероятность выбрать наперед заданную пару глав с учетом порядка выбора равна 1/N^2. Следовательно, по формуле полной вероятности, Pз = x = 2(N-x^2)/N.

Пусть теперь x = 0. Тогда на обоих шагах выбора появляется одна и та же глава. Всего глав N и каждая из них может быть выбрана дважды подряд с вероятностью 1/N^2. Следовательно, Pз = 0 = 1/N. Лемма доказана.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)