|
|||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Тема «Решение уравнений»
Решение обыкновенных уравнений. Для решения уравнений в Maple существует универсальная команда solve(eq,x), где eq – уравнение, x – переменная, относительно которой уравнение надо разрешить. В результате выполнения этой команды в строке вывода появится выражение, которое является решением данного уравнения. Пример: > solve(a*x+b=c,x); Если уравнение имеет несколько решений, которые вам понадобятся для дальнейших расчетов, то команде solve следует присвоить какое-нибудь имя name. Обращение к какому-либо k –ому решению данного уравнения производится указанием его имени с номером решения k в квадратных скобках: name[k]. Пример: > x:=solve(x^2-a=0,x);
> x[1];
> x[2];
> x[1]+x[2];
Решение систем уравнений. Системы уравнений решаются с помощью такой же команды solve({eq1,eq2,…},{x1,x2,…}), только теперь в параметрах команды следует указывать в первых фигурных скобках через запятую уравнения, а во вторых фигурных скобках перечисляются через запятую переменные, относительно которых требуется решить систему. Если вам будет необходимо для дальнейших вычислений использовать полученные решения уравнений, то команде solve следует присвоить какое-нибудь имя name. Затем выполняется присвоения команда assign(name). После этого над решениями можно будет производить математические операции. Пример: > s:=solve({a*x-y=1,5*x+a*y=1},{x,y});
> assign(s); simplify(x-y); Пример: Найти все решения системы уравнений Наберите: > eq:={x^2-y^2=1,x^2+x*y=2}; > _EnvExplicit:=true: > s:=solve(eq,{x,y}); Теперь найдите сумму двух наборов решений. Наберите: > x1:=subs(s[1],x): y1:=subs(s[1],y): > x2:=subs(s[2],x): y2:=subs(s[2],y): > x1+x2; y1+y2; Чему равны эти суммы решений?
Численное решение уравнений. Для численного решения уравнений, в тех случаях, когда трансцендентные уравнения не имеют аналитических решений, используется специальная команда fsolve(eq,x), параметры которой такие же, как и команды solve. Пример: > x:=fsolve(cos(x)=x,x); x: =. 7390851332
Решение рекуррентных и функциональных уравнений. Команда rsolve(eq,f) позволяет решить рекуррентное уравнение eq для целой функции f. Можно задать некоторое начальное условие для функции f(n), тогда получиться частное решение данного рекуррентного уравнения. Например: > eq:=2*f(n)=3*f(n-1)-f(n-2); eq:= 2 f (n) = 3 f (n −1) − f (n − 2) > rsolve({eq,f(1)=0,f(2)=1},f); Универсальная команда solve позволяет решать функциональные уравнения. Пример: > F:=solve(f(x)^2-3*f(x)+2*x,f); F:= proc (x) RootOf(_ Z ^2 - 3*_ Z + 2* x) end В результате получается решение в неявном виде. Однако Maple может работать с такими решениями. Неявное решение функционального уравнения можно попытаться преобразовать в какую-либо элементарную функцию с помощью команды convert. Продолжая приведенный выше пример, можно получить решение в явном виде: > f:=convert(F(x),radical); В Maple символ _ Z ~ обозначает константу целого типа, поэтому решение данного уравнения в привычной форме имеет вид , где n – целые числа.
Решение трансцендентных уравнений. При решении трансцендентных уравнений для получения решения в явном виде перед командой solve следует ввести дополнительную команду _EnvExplicit:=true. Пример решения сложной системы трансцендентных уравнений и упрощения вида решений: > eq:={ 7*3^x-3*2^(z+y-x+2)=15, 2*3^(x+1)+ 3*2^(z+y-x)= 66, ln(x+y+z)-3*ln(x)-ln(y*z)=-ln(4) }: > _EnvExplicit:=true: > s:=solve(eq,{x,y,z}): > simplify(s[1]);simplify(s[2]); { x =2, y =3, z =1}, { x =2, y =1, z =3}
Индивидуальные задания:
Решить систему уравнений:
Решить символьное уравнение: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |