АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Дифференцирование

Читайте также:
  1. Дифференцирование основных элементарных функций.
  2. Дифференцирование сложной функции.
  3. Дифференцирование функции, известной приближенно
  4. КР-2. Табличное дифференцирование, линеаризация, дифференциал.
  5. ПОКАЗАТЕЛЬНО-СТЕПЕННАЯ ФУНКЦИЯ И ЕЕ ДИФФЕРЕНЦИРОВАНИЕ

 

Вычисление производных.

Для вычисления производных в Maple имеются две команды:

1) прямого исполнения – diff(f,x), где f – функция, которую следует продифференцировать, x – имя переменной, по которой производится дифференцирование.

2) отложенного исполнения – Diff(f,x), где параметры команды такие же, как и в предыдущей. Действие этой команды сводится к аналитической записи производной в виде После выполнения дифференцирования, полученное выражение желательно упростить. Для этого следует использовать команды simplify factor или expand, в зависимости от того, в каком виде вам нужен результат.

Пример:

> Diff(sin(x^2),x)=diff(sin(x^2),x);

Для вычисления производных старших порядков следует указать в параметрах x$n, где n – порядок производной;

Пример:

> Diff(cos(2*x)^2,x$4)=diff(cos(2*x)^2,x$4);

Полученное выражение можно упростить двумя способами:

> simplify(%);

> combine(%);

Дифференциальный оператор

Для определения дифференциального оператора используется команда D(f)f -функция. Например:

> D(sin);

cos

Вычисление производной в точке:

> D(sin)(Pi):eval(%);

-1

Оператор дифференцирования применяется к функциональным операторам

> f:=x-> ln(x^2)+exp(3*x):

> D(f);

Пример: Вычислить вторую производную функции в точках .

> y:=sin(x)^2/(2+sin(x)): d2:=diff(y,x$2):

> x:=Pi; d2y(x)=d2;

> x:=Pi/2;d2y(x)=d2;


Индивидуальные задания:

Вычислить предел:

Задание Задание
   
   
   
   
   
   
   

 

Вычислить производную:


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)