|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Особенности движения в поле ШварцшильдаПри движении релятивистской ракеты возможна встреча с коллапсированной звездой (“черной дырой” или “коллапсаром”). Моделируя “черную дыру” метрикой Шварцшильда, можно классифицировать орбиты ракеты; интенсивность поля гравитации столь высока, что небесное тело (ракета) при близком прохождении может быть втянуто внутрь “дыры”. Итак, рассмотрим метрику Шварцшильда
Здесь
Из (2.3.4) при действии реактивного ускорения
Комбинируя (5.1.3) с интегралом, следующим из (5.1.1) и (5.1.2)
получим основное уравнение траектории
где
Выражение (5.1.6) – алгебраическое уравнение пятой степени, в отличие от третьей степени для случая отсутствия реактивного ускорения
и получить связь между Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.18 сек.) |