ОБЕРНЕНА МАТРИЦЯ
Матриця А-1 називається оберненою по відношенню до матриці А, якщо АА-1=А-1А=Е, де Е – одинична матриця.
Для того, щоб для матриці А існувала обернена, необхідно і достатньо, щоб детермінант матриці А був відмінний від нуля.
Квадратна матриця, детермінант якої відмінний від нуля, називається невиродженою (або неособливою), в противному випадку – виродженою (або особливою). Вироджені матриці обернених матриць не мають. Будь-яка невироджена матриця А має єдину обернену матрицю А-1:
де D=ïАï, Аij- алгебраїчні доповнення елемента аij матриці А, утворену за правилом: кожен елемент матриці А заміняється його алгебраїчним доповненням, потім одержана матриця транспонується і кожен її елемент ділиться на детермінант матриці А.
Для невироджених матриць вірне співвідношення:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Поиск по сайту:
|