|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Гіпербола
Гіперболою називається геометричне місце точок площини, модуль різниці відстаней кожної з яких до двох даних точок, що називаються фокусами, є величиною сталою і меншою за відстань між фокусами. Використаємо прямокутну систему координат і позначення з п.18. Тоді рівняння гіперболи можна записати у вигляді причому Згідно з формулами рівняння гіперболи можна подати у вигляді Внаслідок перетворень останнього рівняння знаходимо , (19.1) де Рівняння (19.1) називається канонічним рівнянням гіперболи. Гіпербола складається з двох гілок. Ліва гілка лежить у півплощині а права – у площині Рівняння фокальних радіусів точки гіперболи знаходять так само, як і для еліпса. Дл лівої гілки гіперболи ці рівняння мають
вигляд
а для правої
Рис.19
Властивості гіперболи:
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |