|
|||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Раздел 1. Технические характеристики топлива1.1 Топливо и его составные части
Среди различных источников энергии, использованных для энерготехнологического обеспечения потребностей страны, ведущая роль принадлежит топливу. Топливом называются вещества, горение которых сопровождается выделением значительного количества тепла и которые удовлетворяют следующим требованиям: 1. Газообразное состояние продуктов горения и их безвредность; 2. Наличие горючих элементов, определяющее экономическую целесообразность их использования; 3. Возможность управления процессами. Этим требованиям удовлетворяют лишь два химических элемента: углерод (С) и водород (Н), а так же их химические соединения. Топливо имеет органическое происхождение и является главным источником получения тепловой энергии. Различают энергетическое и технологическое топливо. Энергетическим называется топливо, которое используется для производства электрической энергии, водяного пара и горячей воды. Технологическим называется топливо, которое используется в печных агрегатах для совершения технологического процесса. По агрегатному состоянию различают твердое, жидкое и газообразное топливо. Принято состав жидкого и твердого топлива выражать в массовых процентах, а газообразного – в объемных процентах. Качество топлива оценивается несколькими характеристиками: - химическим составом; - теплотой сгорания. Полный химический анализ, как правило, применяется только для определения состава газообразного топлива. Жидкое топливо оценивается по плотности. Для определения характеристики твердого и жидкого топлива проводят технический и элементарный анализ. При техническом анализе а топливе определяются летучие, влага, зола. Для характеристики топлива в общем виде принято делать элементарный анализ, при котором содержание той или иной составляющей обозначать химическим знаком. присвоенным данному элементу или составляющей. С + Н + О + N + S + А + W = 100% (1.1)
Символы С, Н, О, N, S, А, W выражают % содержание в топливе (по массе) углерода, водорода, кислорода, азота, золы, серы, воды. Компоненты топлива. Углерод (С) - наиболее важная составляющая топлива. Он находится в свободном состоянии, в виде органически сложных соединений с другими элементами. В органической части различных твердых топлив содержание углерода колеблется от 50% (древесина) до 95% (антрацит). В органической части различных сортов жидкого топлива содержание углерода достигает 90%. Водород (Н) - находится в свободном состоянии, в виде непрочных химических соединений с углеродом, серой и т.д. Общее содержание водорода в естественном твердом топливе колеблется от 1% до 6%, в жидком оно достигает 10 – 15%, а в газообразном топливе – до 60% (коксовальный газ). Водород, находящейся в соединении с кислородом называют “связанным” и такой водород инертен к горению. Условно считают, что весь кислород топлива связан с водородом в виде воды (правило Дюлонга). Следовательно, если в топливе содержится кислород в таком то количестве по его массе (О2, кг), то масса “связанного” им водорода составит Нсвяз.= О2 /8 кг. Коэффициент “8” определен из весовых соотношений О2 и Н2 (реакция горения 1 кг Н2 требует 8 кг О2) Н2 + ½ О2 = Н2О (2 + ½ . 32 = 18) и на 1 кг Н2 требуется 16/2 = 8 кг кислорода. Количество свободного водорода в топливе составит Нсвоб.= Нобщ – Нсвяз = Нобщ - О2 /8 Водород является самым легким горючим газом, его плотность равна r = 2/ 22,4 = 0,09 кг/м3
Кислород (О) находится в топливе в основном в виде прочных соединений с горючими элементами и не поддерживает горение, снижая тем самым теплоту сгорания топлива. Кислород является балластом. Содержание кислорода в древесине достигает 44%, в жидком топливе кислорода содержится не менее 1,5%, а в газообразном топливе кислорода содержится менее 1,5%. В газообразном топливе содержание свободного кислорода незначительно (0,2 – 0,5%). Свободный кислород может участвовать в горении и это обстоятельстве необходимо учитывать при расчете. Азот (N) является балластом. В твердом и жидком топливе содержится азота 0,5 – 1,0%. а в газообразном топливе его содержание достигает до 60% (доменный газ). Сера (S) содержится в газообразном топливе в виде SО2, Н2S. В твердом и жидком топливе она может содержаться в трех видах: в виде органических соединений с углеродом, водородом, азотом и кислородом (Sо), в виде сернистого соединения с металлами и называется колчеданной и обозначается Sк и в виде сульфатов Sc. S = So + Sc + Sk При нагреве топлива без доступа воздуха (при сухой перегонке) вся органическая и колчеданная сера улетучивается с продуктами горения – эту серу называют летучей. При горении летучей серы выделяется в значительных количествах тепло. Сера так же может находится в виде сернокислых сульфатных соединений: СаSО4, FeSО4, MgSО4. Такая сера называется сульфатной и обозначается Sс. Сульфатная сера находится в окисленном состоянии и не может вступать в реакцию горения. Присутствие серы в топливе нежелательно, т.к. сернистый газ SО2, образующийся при горении и выброшенный с продуктами горения, вредно действует на растительный и животный мир. При плавлении металла часть серы из газовой фазы может переходить в металл, резко снижая его качество (красноломкость стали). По этой причине применение сернистых мазутов ограничивается при отоплении мартеновских печей содержанием серы S< 0,5%. При содержании серы более 3 % в топливе делает его малопригодным для промышленного пользования. Зола (А) топлива является балластом, ухудшающим тепловые свойства и условия сжигания топлива. Зола состоит из кислотных окислов (SiО2, Аl2О3), из основных оксидов (СаО, FeО,Fe2О3, MgО, Nа2О, К2О). Зола входит, главным образом, в состав твердого топлива. Жидкое топливо содержит мало золы. Газообразное топливо содержит золу только в виде пыли. При оценке топлива по зольности большое значение имеет ее температура плавления. По температуре плавления золу делят на 4 группы: 1. Легкоплавкая (tпл < 1150 оС); 2. Среднеплавкая (tпл » 1150 – 1350 оС); 3. Тугоплавкая (tпл » 1350 – 1500 оС); 4. Огнеупорная (tпл > 1500 оС). Температуру плавления определяют в лаборатории согласно ГОСТ по поведению при нагревании стандартного образца из золы. Чем выше температура плавления золы, тем лучше и полнее сжигается топливо. Легкоплавкая зола дает шлаки с низкой температурой плавления и тем самым усиливается шлакование топок, затрудняя подачу воздуха, снижает степень выгорания топлива. Температуру плавления золы определяют в основном по ее составу и, в частности, по ее кислотности: чем больше отношение содержащихся в золе кислотных окислов к основным, тем выше и температура плавления. Кроме того, огнеупорность золы возрастает с увеличением содержания Аl2О3 в сумме кислотных окислов (Аl2О3 + SiО2). Отношение (1.2) изменяется от 4,5 до 11,5 при переходе от легкоплавкой золы к тугоплавкой. Отношение изменяется в этом случае от 0,28 до 0,40. Зольность топлива в действительных условиях колеблется в пределах доли процента для газового топлива, долей процента для жидкого топлива, для дров 1 – 2%, 5 – 10% для хороших каменных углей и до 30 – 50% для горючих сланцев и торфа. Влага (W) является балластом топлива, т.к. снижает использование тепла при сжигании в тех или иных тепловых агрегатах. Различают внешнюю и внутреннюю влагу. Под внешней (Wвнеш) понимают влагу, которая попала в топливо из окружающей среды в процессе его добычи и транспортировки. Внешняя влага удаляется при естественной подсушке топлива (без подогрева) до так называемого воздушно-сухого состояния. При достижении топливом воздушно-сухого состояния наступает равенство меду упругостью водяного пара в топливе и наружным давлением водяного пара, насыщающего окружающую атмосферу, и удаление влаги из топлива прекращается. Внутренняя влага (Wвнутр) включает в себя гигроскопическую и гидратную влагу. Гигроскопическая влажность определяется высушиванием топлива до постоянной массы при температуре 105 оС. Топливо предварительно измельчают в порошок и доводят до воздушного состояния. Гигроскопическая влажность иначе называется влажностью аналитической пробы. Величина гигроскопической влажности различных видов топлива колеблется в широких пределах: - тощие каменные угли и антрацит – 0,5 – 1%; - каменные угли пламенные – 1 – 2, 5%; - бурый уголь – 30 – 40%; - дрова – 15 – 20%; - торф – 20 – 30%. Гидратная влага содержится в минеральной части топлива (золе), входящая в состав различных химических соединений. Содержание гидратной влаги по сравнению с влажностью рабочего топлива невелико и поэтому в печной теплотехнике этой составляющей пренебрегают. Гидратная влага удаляется в процессе нагревания топлива при температурах 400 – 500 оС. Содержание рабочей влаги в твердом топливе колеблется в широких пределах. Влажность топлива тем выше, чем меньше его геологический возраст. Содержание влаги в антраците не превышает 5%, в зеленой древесине – до 60%, а в свежедобытом торфе – 80%. В жидком топливе влага является случайной примесью, попавшей при транспортировке, хранении и при разогреве цистерн “острым паром”. Содержание влаги в жидком топливе, а так же и в твердом топливе, когда требуется повышенная точность измерения, определяют методом дистилляции. В газообразном топливе влага находится в виде паров, предельное содержание которых определяется температурой насыщения водяного пара. Содержание влаги при нормальных условиях не велико и не превышает 3 – 5% по объему. При снижении температуры на каком-нибудь участке происходит выпадение влаги. Результаты анализа топлива могут характеризовать: - органическую массу; горючую массу; сухую массу; рабочее топливо. Каждая из этих характеристик определяется компонентами, которые входят в нее.
Для пересчета составов из одной массы в другую необходимо выполнить соответствующий перерасчет согласно таблице
Таблица 1 - Формулы коэффициентов – множителей для перерас - чета состава топлива
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |