|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Оценка рыночного риска: доходность портфеля, коэффициент корреляции между активами и риск портфеля, среднеквадратическое отклонение по портфелю ценных бумагОценка рыночного риска доходность портфеля, коэффициент корреляции между активами и риск портфеля, среднеквадратическое отклонение по портфелю ценных бумаг. Ожидаемая доходность портфеля — набора активов представляет собой взвешенную среднюю из показателей ожидаемой доходности отдельных активов, входящих в данный портфель: где ар — ожидаемая доходность портфеля; xi — доля стоимости портфеля, инвестированная в i-й актив; aj — ожидаемая доходность i-го актива; i — порядковый номер актива, n — число активов в портфеле; Риск портфеля в большинстве случаев меньше риска входящих в его состав активов. Для измерения риска портфеля необходимо вычислять среднее квадратическое отклонение его доходности. При дискретном распределении доходности его легко может подсчитать, определив дисперсию доходности портфеля следующим образом:
где
m — число возможных состояний экономики. Ковариация и коэффициент корреляции являются основными понятиями, используемыми для анализа риска портфеля. Напомним, ковариация — это мера, учитывающая дисперсию, или разброс индивидуальных значений доходности акции либо других активов, и силу связи между изменением доходности данной акции и других акций. Например, ковариация между акциями А и В показывает, существует ли взаимосвязь между увеличением или уменьшением значения доходности этих акций, а кроме того, силу этой взаимосвязи. Ковариация рассчитывается так: где
Содержательно интерпретировать численное значение ковариации довольно сложно, поэтому для измерения силы связи между двумя переменными используется другая статистическая характеристика, называемая коэффициентом корреляции. Напомним, что корреляцией называется тенденция двух переменных к совместному изменению. Сила этой тенденции и измеряется с помощью коэффициента, который лежит в пределах от +1,0 (что означает тождественное изменение переменных) до —1,0 (что означает изменение значений двух переменных абсолютно противоположным образом). Равенство коэффициента корреляции нулю указывает отсутствие связи между переменными. Коэффициент корреляции между переменными A и В рассчитывается следующим образом: где
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |