|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Моделирование тенденции временного рядаРаспространенным способом моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда. Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения трендов чаще всего применяются следующие функции: линейный тренд: ; гипербола: ; экспоненциальный тренд: (или ); степенная функция: ; полиномы различных степеней: . Параметры каждого из перечисленных выше трендов можно определить обычным МНК, используя в качестве независимой переменной время , а в качестве зависимой переменной – фактические уровни временного ряда . Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации. Выбор наилучшего уравнения в случае, когда ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации и средней ошибки аппроксимации. Этот метод легко реализуется при компьютерной обработке данных. Простейший подход к моделированию сезонных колебаний – это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий: . (3) Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (), сезонной () и случайной () компонент. Общий вид мультипликативной модели выглядит так: . (4) Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (), сезонной () и случайной () компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Построение аддитивной и мультипликативной моделей сводится к расчету значений , и для каждого уровня ряда. Процесс построения модели включает в себя следующие шаги. 1) Выравнивание исходного ряда методом скользящей средней. 2) Расчет значений сезонной компоненты . 3) Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных () в аддитивной или () в мультипликативной модели. 4) Аналитическое выравнивание уровней () или () и расчет значений с использованием полученного уравнения тренда. 5) Расчет полученных по модели значений () или (). 6) Расчет абсолютных и/или относительных ошибок. Литература: [1,2, 4, 5,6, 8,9, 3, 12, 13. 22, 23].
Лекции №10. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |