АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Оценка качества множественной регрессии

Читайте также:
  1. II. Оценка эффективности инвестиционного менеджмента.
  2. IV.Оценка эффективности деятельности структурного подразделения организации
  3. А что же тогда является успехом? Это присутствие высокого качества в том, что вы делаете, даже в самых простых действиях.
  4. Абсолютные и относительные показатели силы связи в уравнениях парной регрессии.
  5. Автокорреляция в остатках. Критерий Дарбина-Уотсона в оценке качества уравнений, построенных по временным рядам.
  6. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  7. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
  8. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
  9. Анализ и оценка состояния управления инвестиционным процессом в ОАО «Дашковка»
  10. АНАЛИЗ ЛИКВИДНОСТИ БАЛАНСА (ОЦЕНКА ТЕКУЩЕЙ И ПЕРСПЕКТИВНОЙ ЛИКВИДНОСТИ)
  11. Аппроксимационная задача линейной регрессии
  12. Аспекты несовершенной системы качества продукции

Наиболее часто в практических расчетах для оценки качества уравнения множественной регрессии применяется показатель множественной корреляции и его квадрата – показатель детерминации.

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком или, иначе, оценивает тесноту совместного влияния факторов на результат.

Независимо от формы связи показатель множественной корреляции может быть найден как индекс множественной корреляции:

, (31)

где – общая дисперсия результативного признака; – остаточная дисперсия.

Границы изменения индекса множественной корреляции от 0 до 1. Чем ближе его значение к 1, тем теснее связь результативного признака со всем набором исследуемых факторов. Величина индекса множественной корреляции должна быть больше или равна максимальному парному индексу корреляции. Сравнивая индексы множественной и парной корреляции, можно сделать вывод о целесообразности включения в уравнение регрессии того или иного фактора. Для трех переменных двухфакторного уравнения регрессии частный коэффициент(индекс) множественной корреляции имеет вид:

, (32)

где , , - парные коэффициенты корреляции.

Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии.

Рассчитанные по рекуррентной формуле частные коэффициенты корреляции изменяются в пределах от –1 до +1, а по формулам через множественные коэффициенты детерминации – от 0 до 1. Сравнение их друг с другом позволяет ранжировать факторы по тесноте их связи с результатом. Частные коэффициенты корреляции дают меру тесноты связи каждого фактора с результатом в чистом виде.

Оценка значимости коэффициентов регрессии bj по -критерию Стьюдента может быть проверена по формулам, как и в парной регрессии, для каждого фактора:

(33)

где bj – коэффициент регрессии при факторе xj, – средняя квадратичная (стандартная) ошибка коэффициента регрессии bj равная = S или, например, для коэффициентов b1 и b2 стандартные ошибки оценки равны:

, .

Значимость уравнения множественной регрессии в целом, так же как и в парной регрессии, оценивается с помощью -критерия Фишера:

, (34)

где – факторная сумма квадратов на одну степень свободы; – остаточная сумма квадратов на одну степень свободы; – коэффициент (индекс) множественной детерминации; – число параметров при переменных (в линейной регрессии совпадает с числом включенных в модель факторов); – число наблюдений.

Мерой для оценки включения фактора в модель служит частный -критерий.

Частный -критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора, с остаточной дисперсией на одну степень свободы по регрессионной модели в целом. В общем виде для фактора частный -критерий определится как

, (35)

где – коэффициент множественной детерминации для модели с полным набором факторов, – тот же показатель, но без включения в модель фактора , – число наблюдений, – число параметров в модели (без свободного члена).

Частный -критерий широко используется и при построении модели методом включения переменных и шаговым регрессионным методом.

 

Литература: [1,2, 4, 5,6, 8,9, 3, 12, 13. 22, 23].

 

Лекции №9.

Вопросы:

1.Что называется моделями временных рядов.

2.Чему равен коэффициент автокорреляции.

3.Какой вид имеет мультипликативная модель временного ряда.

4. Чему равен критерий Дарбина-Уотсона.

Цель лекции: исследование временных рядов.

Временные ряды

При построении эконометрической модели используются два типа данных:

1) данные, характеризующие совокупность различных объектов в определенный момент времени;

2) данные, характеризующие один объект за ряд последовательных моментов времени.

Модели, построенные по данным первого типа, называются пространственными моделями. Модели, построенные на основе второго типа данных, называются моделями временных рядов.

Временной ряд (ряд динамики) – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

1) факторы, формирующие тенденцию ряда;

2) факторы, формирующие циклические колебания ряда;

3) случайные факторы.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)