АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тема 2.2 Термодинамические циклы, использование в промышленных установках

Читайте также:
  1. C. Использование комбинации диуретиков из разных фармакологических групп
  2. Exercises for Lesson 4. There is / there are. Функция. Формы. Использование в ситуации гостиницы
  3. IV. Использование экскрементов производства
  4. What is Public Relations? What are the advantages and the disadvantages of Public Relations? Why do marketers tend to underuse it( неполноеиспользованиеих)?
  5. Анализ финансового состояния предприятия: цели, задачи, формы и методы проведения. Система аналитических коэффициентов и ее использование.
  6. Анализ эффективности операций банка с использованием платежных карточек.
  7. Аэрация промышленных зданий
  8. БИЛЕТ 8 ВВП И ЧЭБ. ИСПОЛЬЗОВАНИЕ ВВП ДЛЯ ХАР-КИ ЭКОН-ГО РАЗВИТИЯ СТРАНЫ.
  9. ВАЖНАЯ ИНФОРМАЦИЯ ОТ E-SIGN - СОГЛАСИЕ НА ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОННЫХ ДОКУМЕНТОВ
  10. Внедрение и использование результатов исследования.
  11. Вопрос 2. Сбор, подготовка и утилизация промышленных сточных вод
  12. Вопрос 8. Мероприятия, обеспечивающие безопасность персонала в электроустановках.

Идеальный термодинамический цикл Карно и его свойства

Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.

Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году.

Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.

Рис. 8.1 Цикл Карно

Пусть тепловая машина состоит из нагревателя с температурой TH, холодильника с температурой TX и рабочего тела.

Цикл Карно состоит из четырёх стадий:

1. Изотермическое расширение (на рисунке — процесс A→Б). В начале процесса рабочее тело имеет температуру TH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается.

2. Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

3. Изотермическое сжатие (на рисунке — процесс В→Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX.

4. Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия (поскольку при δ Q = 0).

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

Двигатели внутреннего сгорания (ДВС)

· Поршневые двигатели — камерой сгорания является цилиндр, где химическая энергия топлива превращается в механическую энергию, которая из возвратно-поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.

ДВС классифицируют: а) По назначению - делятся на транспортные, стационарные и специальные. б) По роду применяемого топлива - легкие жидкие (бензин, газ), тяжелые жидкие (дизельное топливо). в) По способу образования горючей смеси - внешнее (карбюратор) и внутреннее у дизельного ДВС. г) По способу воспламенения либо искра либо сжатие. д) По числу и расположению цилиндров разделяют рядные, горизонтальные, вертикальные, V-образные, оппозитные.

Бензиновые карбюраторные

Смесь топлива с воздухом готовится в карбюраторе и далее во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае - её гомогенизированность.

Дизельные

Специальное дизельное топливо впрыскивается в цилиндр под высоким давлением. Горючая смесь образуется (и сразу же сгорает) непосредственно в цилиндре по мере впрыска порции топлива. Воспламенение смеси происходит под действием высокой температуры воздуха, подвергшегося сжатию в цилиндре.

Газовые

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

· смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.

· сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.

· генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:

o уголь

o торф

o древесина

Газодизельные

Рис. 8.2

 

Двухтактный цикл

Рис. 8.3

Схема работы четырехтактного двигателя, цикл Отто
1. впуск
2. сжатие
3. рабочий ход
4. выпуск

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)