|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Отображение октановых чисел, дистилляционных свойств и давления паровПрибор использует различные методы для расчета прогнозируемых величин октановых чисел, дистилляционных свойств и давления паров бензина: метод кластерного анализа и метод многолинейного регрессионного анализа. Кластерный анализ дает лучшие результаты, но требует калибровки по пробам, аналогичным измеряемым образцам. Многолинейный регрессионный анализ применим всегда, даже если в библиотеке имеются пробы, очень отличающиеся от измеряемых образцов. Можно ввести «множитель качества» для прогнозируемых величин. Этот множитель выводится на основе используемого метода и статистического анализа. Его значение находится в пределах от 1 (высокая вероятность) до 5 (низкая вероятность). Множитель качества и название используемого метода отображается на дисплее вместе с полученными результатами в следующем виде:
Большие цифры справа от буквы «G» обозначают группы в библиотеке данных калибровки, которые были использованы для расчета предсказываемых октановых чисел, температур дистилляции и давления паров. В данном случае были включены все группы. Mahalanobis distance – это расстояние, показывающее, насколько хорошо неизвестная проба представлена в библиотеке. Малое расстояние означает, что неизвестная проба хорошо представлена в библиотеке, так что вычисленные значения имеют высокую вероятность быть правильными. Большие цифры между колонками объемных и массовых процентов – это прогнозируемые (вычисленные) величины октановых чисел, где MON –октановое число по моторному методу, RON – октановое число по исследовательскому методу, AKI – антидетонационный индекс (AKI = (RON + MON)/2). В дистилляционных свойствах используются следующие сокращения: IBP – начальная температура кипения, Т10, Т50 и Т90 – это температуры, когда испаряется 10, 50 или 90 объемных процентов, а FBP – конечная температура кипения. Температуры дистилляции даются в ° С или в ° F в зависимости от выбранной в меню установки единицы измерения температуры. Индекс запускаемости (driveability index) вычисляется по формуле (14. 6.1):
DI = 1,5Т10 + 3Т50 + Т90, (14. 6.1)
При вычислении по этой формуле температура выражается в градусах Фаренгейта или Цельсия в зависимости от выбранной для этого индекса в меню установки единицы температуры. VP – это давление паров в кПа или в psi (фунт/дюйм2) в зависимости от выбранной в меню установки единицы измерения давления. Давление паров – это эквивалентное давление паров по «сухому» Рейду (DVPE, "сухой" Рейд, ASTM D 5191). Малые цифры – множитель качества и используемый метод. Первая малая цифра обозначает множитель качества, вторая является кодом применяемого метода. Это сочетание может быть таким: 1.1: Ожидается, что прогнозируемая величина хорошо соответствует действительному значению; использовался кластерный анализ. 2.1: Возможно несколько большее отклонение от действительного значения; использовался кластерный анализ. 5.3: В библиотеке не найден бензин с характеристиками, подобными характеристикам неизвестного бензина (в математическом смысле); использовался многолинейный регрессионный анализ. 6.3: Использовался многолинейный регрессионный анализ, как в 5.3, но расстояние Mahalanobis оказалось больше 3k/N, к – количество свойств, использованных для предсказаний, N – количество проб в группе (группах), использованных для предсказаний. Такая величина расстояния Mahalanobis означает, что эта неизвестная проба плохо представлена в базе данных. Поэтому к предсказанным значениям нужно относиться осторожно. Для улучшения положения следует добавить такую же или похожие пробы в базу данных. 6.1: Использовался кластерный анализ, но расстояние Mahalanobis было больше 3k/N. 0.3: Использовался многолинейный регрессионный анализ, как в 5.3. Однако его применение требует минимума свойств, используемых для предсказаний. Это минимальное число свойств не было достигнуто. Добавьте, пожалуйста, несколько проб в базу данных (см. раздел 6.5). Пределы реального совпадения зависят от библиотеки эталонных образцов и измеряемых проб. Поэтому нельзя заранее указать доверительный предел или стандартное отклонение предсказанных значений на основе множителя качества. Однако, если множитель качества равен 1 или 2, то Ваша библиотека эталонных образцов хорошо соответствует Вашим пробам. Если очень часто получается цифра 5.3, то Ваша база данных содержит очень мало образцов бензина, параметры которых близки к Вашим неизвестным пробам.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |