|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
КОНТУР С ТОКОМ В МАГНИТНОМ ПОЛЕРассмотрим действие магнитного поля на замкнутый контур с током. Для характеристики плоского контура с током вводят вектор магнитного момента Так как сила тока и магнитная индукция при указанных условиях постоянны, то их можно вынести из-под знака суммы, а сумма элементарных векторов Если результирующая сила равна нулю, то центр масс контура будет оставаться неподвижным, т. е. контур не будет двигаться поступательно, но возможно вращательное движение. Найдем вращающий момент сил, действующих на контур. Рассмотрим простейший случай – линии вектора магнитной индукции лежат в плоскости контура. Разобьем контур на бесконечно узкие полоски шириной Каждая полоска ограничена элементами тока, на которые со стороны магнитного поля действуют силы
Величина момента этой пары сил (равные по величине и противоположные по направлению): Моменты сил действующих на все пары элементов тока контура направлены в одну строну и величина момента, действующего на весь контур Следовательно, в этом случае при В общем случае Вращающий момент равен нулю при Во втором случае Свободный контур в магнитном поле будет вращаться до устойчивого положения и, при достаточно малых размерах, может быть использован для исследования магнитного поля, а также определения вектора магнитной индукции: Магнитная индукция – векторная физическая величина, численно равная максимальному вращающему моменту, действующему со стороны магнитного поля на контур с единичным магнитным моментом в данной точке поля. В устойчивом положении силы Ампера будут растягивать контур, а в неустойчивом положении эти силы будут вызывать сжатие контура (рис.87). В сильных магнитных полях возможна деформация замкнутых контуров, разрыв витков катушек.
Если контур с током не плоский, то каждый элемент контура можно представить в виде двух векторов, параллельных и перпендикулярных вектору индукции При повороте контура на малый угол совершается работа
Энергия контура минимальна, если магнитный момент параллелен вектору магнитной индукции, т. е. в этом случае контур находится в устойчивом положении равновесия. В неустойчивом положении сложно. Поэтому рассмотрим случай, энергия контура будет максимальна. В общем случае неоднородного поля описать поведение контура достаточно когда поле неоднородно, но величина магнитной индукции существенно изменяется в направлении линий магнитной индукции и практически не изменяется в перпендикулярных к ним направлениях (рис.88а).
РИС.88В этом случае также возникает момент сил, ориентирующий магнитный момент в направлении вектора магнитной индукции. В отличие от однородного поля результирующая сила, действующая на контур не равна нулю, так каждую силу можно представить в виде двух слагаемых
Сумма сил, лежащих в плоскости контура, определяет деформацию контура, а силы, перпендикулярные плоскости контура определяют втягивание контура в область более сильного поля (рис.88б). Для элементарного контура (малых размеров) и в случае указанного неоднородного поля сила, действующая на него, может быть определена по следующей формуле
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (1.591 сек.) |