АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Поле прямого и кругового токов

Читайте также:
  1. II. Методы непрямого остеосинтеза.
  2. Анализ денежных потоков
  3. Анализ денежных потоков предприятия
  4. Анализ денежных потоков.
  5. Анализ и оценка денежных потоков по видам деятельности
  6. Анализ и оценка денежных потоков предприятия
  7. Анализ опасности прикосновения к токоведущим частям в трёхфазных сетях с изолированной и заземлённой нейтралью.
  8. АНТИКОАГУЛЯНТЫ НЕПРЯМОГО ДЕЙСТВИЯ (ПЕРОРАЛЬНЫЕ АНТИКОАГУЛЯНТЫ)
  9. Благословенья С неба польются дождём, Падают капля за каплей, Боже, потоков мы ждём.
  10. Блокировка токовых направленных защит. Расчет уставок направленных токовых защит. Ток срабатывания, выдержка времени, мертвая зона токовой направленной защиты.
  11. В роли прямого дополнения
  12. Взаимодействие параллельных токов

Из рис. 4 с учетом (6) находим, что d плоскости, в которой лежат d и ; далее можно найти ,откуда, принимая во внимание, что получаем . С учетом этого из (5) находим:

интегрируя последнее равенство, получаем: (8)

Для бесконечно длинного проводника , и из (8) следует, что

(9)

C учетом (4) и (9) cила взаимодействия двух бесконечно длинных тонких и параллельных проводников . (10)

Пусть I1 = I2 = I, r0 = 1м, l = 1м, F = Н, тогда I = 1 А. Это было строгое определение единицы силы тока - ампера.

Можно показать, что магнитная индукция поля, созданного круговым током радиуса R, на расстоянии r0 вдоль перпендикуляра, восстановленного из центра контура, (см. рис.5), будет (11)

В частности, в центре кругового тока ,

. (12)

Для плоской катушки, состоящей из N, витков магнитная индукция на оси катушки

.(13)

При больших расстояниях от контура, (рис. 5), т. е. при r0 >> R из (11) получим

(14)

4. поле движущего заряда Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов. Значит можно считать, что любой движущийся в вакууме или среде заряд порождает вокруг себя магнитное поле. В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой (1) где r — радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r.   Рис.1 Модуль вектора магнитной индукции (1) находится по формуле (2) где α — угол между векторами v и r. Сопоставляя закон Био-Савара-Лапласа и (1), мы видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока: Приведенные законы (1) и (2) выполняются лишь при малых скоростях (v<<с) движущихся зарядов, когда электрическое поле движущегося с постоянной скорость заряда можно считать электростатическим, т. е. создаваемым неподвижным зарядом, который находится в той точке, где в данный момент времени находится движущийся заряд. Формула (1) задает магнитную индукцию положительного заряда, движущегося со скоростью v. При движении отрицательнго заряда Q заменяется на -Q. Скорость v - относительная скорость, т. е. скорость относительно системы отсчета наблюдателя. Вектор В в данной системе отсчета зависит как от времени, так и от расположения наблюдателя. Поэтому следует отметить относительный характер магнитного поля движущегося заряда. Первый, кто обнаружил поле движущегося заряда, был американский физик Г. Роуланду (1848—1901). Окончательно этот факт был установлен профессором Московского университета А. А. Эйхенвальдом (1863—1944), который изучал магнитное поле конвекционного тока и магнитное поле связанных зарядов поляризованного диэлектрика. Магнитное поле движущихся постоянной скоростьб зарядов было измерено академиком А. Ф. Иоффе, который также доказал эквивалентность, в смысле возбуждения магнитного поля, электронного пучка и тока проводимости.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)