ТЕОРЕМА СУЩЕСТВОВАНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА
Если функция f(x) непрерывна на отрезке [ a, в ], то предел интегральной суммы существует и не зависит ни от способов разбиения на отрезке [ a, в ] на элементарные отрезки, ни от выборов точек на этих отрезках.
Если функция f(x) на отрезке [ a, в ] положительна, то определенный интеграл геометрически представляет собой площадь криволинейной трапеции - фигуры, ограниченной линиями
ОСНОВНЫЕ СВОЙСТВА ОПРЕДЕЛЕННОГО ИНТЕГРАЛА
1. ; 2. ; 3. ;
4. ;
4.
ФОРМУЛА НЬЮТОНА - ЛЕЙБНИЦА
, где F(x) - первообразная функции f(x), т.е. F¢(x) = f(x).
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Поиск по сайту:
|