АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

Читайте также:
  1. V2: ДЕ 32 - Дифференциальное исчисление функции одной переменной. Производная
  2. V2: ДЕ 35 - Дифференциальное исчисление функции одной переменной. Производные высший порядков
  3. V2: ДЕ 39 - Интегральное исчисление функции одной переменной. Приложения определенного интеграла
  4. Введение в анализ и дифференциальное исчисление
  5. Глава 1. ИСЧИСЛЕНИЕ НАЛОГА НА ДОХОДЫ И ПРИБЫЛЬ
  6. Дифференциальное исчисление функции
  7. Дифференциальное исчисление функции
  8. Дифференциальное исчисление функции одной переменной
  9. Интегративное, интегральное понимание права.
  10. ИСЧИСЛЕНИЕ ЖЕРТВ ИНКВИЗИЦИИ И ХРОНОЛОГИЧЕСКИЙ СПИСОК ВЕЛИКИХ
  11. ИСЧИСЛЕНИЕ НДС ПРИ ИМПОРТЕ ТОВАРОВ

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Методические указания и

Контрольные задания № 3, 4

Для студентов заочной формы обучения

Ростов-на-Дону

2012 г.

УДК 517.5 (08)

 

Интегральное исчисление. Дифференциальные уравнения. - Ростов-на-Дону: РГСУ, 2012.- 32 c.

 

Методические указания содержат методы решения заданий из контрольных работ № 3, 4. Приведены необходимые теоретические сведения. Изложение сопровождается подробным решением типичных примеров.

Предназначены для студентов заочной формы обучения специальности ЗПГС, ЗИСС.

 

Составители: Богданов А.Е.

Корабельников Г.Я.

Рецензент: Ляпин А.А.

 

Редактор Н.Е.Гладких

Темплан 2012 г., поз.

ЛР 020818 от Подписано в печать Формат 60х84/16

Бумага белая. Ризограф. Уч. – изд. л. 2,0. Тираж 50 экз. Заказ

Редакционно-издательский центр Ростовского государственного строительного университета

344022, Ростов н/Д, ул. Социалистическая, 162

 

ã РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ

СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ, 2012

 

КОНТРОЛЬНАЯ РАБОТА № 3

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

При изучении дифференцированного исчисления решалась следующая задача: дана функция F(x), найти ее производную F¢(x) (в дальнейшем производную F¢(x) будем обозначать f(x)). Интегральное исчисление решает задачу обратную: для непрерывной функции f(x) найти такую функцию F(x), производная которой была бы тождественно равна функции f(x). Функция F(x) называется первообразной,

f(x) - подынтегральной. Ясно, что если F¢(x) = f(x), то и [F¢(x) + C]¢ = f(x). Здесь

С - произвольная постоянная величина.

Определение:

Неопределенным интегралом называется функция F(x) + C, производная которой равна подынтегральной функции f(x), т.е.

= F(x) + C, если [F(x) + C]¢ = f(x).

Подынтегральное выражение f(x)dx есть дифференциал для всех первообразных, т.е. d[F(x) + C] = f(x)dx.

Из определения следует, что процесс нахождения неопределенного интеграла сводится к нахождению первообразной данной функции.

ПРИМЕР:

Пусть f(x) = х. Тогда = 1/2x2 + C.

Справедливость равенства легко проверить дифференцированием:

.

Вообще, используя таблицу производных, можно составить таблицу основных интегралов:

1. 9.
2. 10.
2¢. 11.
3. 12.
3¢. 13.
4. 14.
5. 15.
6. 16.
7. 17.
8. 18.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)