АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ВЫЧИСЛЕНИЕ ДВОЙНОГО ИНТЕГРАЛА

Читайте также:
  1. V2: ДЕ 39 - Интегральное исчисление функции одной переменной. Приложения определенного интеграла
  2. Аддитивность интеграла Римана.
  3. Б) Вычисление тригонометрических функций.
  4. В заданиях 1-8 вычислить значение определенного интеграла.
  5. Векторное и смешанное произведение векторов. Свойства и геометрический смысл. Вычисление через координаты векторов.
  6. ВОЗНИКНОВЕНИЕ И СТРОЕНИЕ ДВОЙНОГО ЭЛЕКТРИЧЕСКОГО СЛОЯ
  7. Вычисление вероятности ЧП (карта Карно).
  8. Вычисление всех собственных значений положительно определенной симметрической матрицы
  9. Вычисление длины дуги кривой
  10. Вычисление и интерпретация параметров парной линейной регрессии
  11. Вычисление конечных и бесконечных сумм и произведений

 

Существуют два основных вида области интегрирования:

1.Область интегрирования Д ограничена слева и справа прямыми х = а,

х = в (а < в), а снизу и сверху - непрерывными кривыми у = j1(х) и у =j2(х)

(j1(х) £ j2(х)), каждая из которых пересекается прямой, параллельной оси Оу, только в одной точке (рис. 1).

 

 

               
 
У
   
     
       
у = j(х)
 
 
 

 

 


               
     
у = j1(х)
 
     
Х
 
 
 

 

 


Рис. 1

 

       
 
   
Х
 

 

 


Рис. 2

 

Вычисление двойного интеграла сводится к двукратному интегрированию

.

Интеграл называется внутренним. В нем х считается постоянной. Этот интеграл вычисляется в первую очередь. А потом вычисляется внешний интеграл по переменной х.

Для того, чтобы поставить пределы внутреннего интеграла, надо посмотреть на изменение у вдоль вектора от точки входа вектора в область Д (нижний предел) до точки выхода вектора из области Д (верхний предел). Пределы внешнего интеграла всегда постоянны и показывают пределы изменения переменной х.

2. Пусть область интегрирования Д ограничена снизу и сверху прямыми

у = с, у = d (с < d), а слева и справа - непрерывными кривыми х = Y1(у), х = Y2(у) (Y1 (у) £ Y1 (у)), каждая из которых пересекается горизонтальной прямой только в одной точке (рис. 2).

Тогда двойной интеграл по такой области вычисляется по формуле

,

причем сначала вычисляется внутренний интеграл, , в котором у считается постоянной.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)