АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ОПРЕДЕЛЕНИЕ СКОРОСТИ ЗВУКА В ВОЗДУХЕ

Читайте также:
  1. Access. Базы данных. Определение ключей и составление запросов.
  2. I. Определение основной и дополнительной зарплаты работников ведется с учетом рабочих, предусмотренных технологической картой.
  3. I. Определение проблемы и целей исследования
  4. III. Определение оптимального уровня денежных средств.
  5. IV. Требования к микроклимату, содержанию аэроионов и вредных химических веществ в воздухе на рабочих местах, оборудованных ПЭВМ
  6. S: На пути световой волны, идущей в воздухе, поставили стеклянную пластинку толщиной 1 мм. На сколько изменится оптическая длина пути, если волна падает на пластинку нормально?
  7. Абсолютно неупругий удар. Абсолютно упругий удар. Скорости шаров после абсолютно упругого центрального удара.
  8. Автоматическое порождение письменного текста: определение, этапы, общая структура системы порождения
  9. Аксиомы науки о безопасности жизнедеятельности. Определение и сущность.
  10. Анализ функциональной связи между затратами, объемом продаж и прибылью. Определение безубыточного объема продаж и зоны безопасности предприятия
  11. Биотехнология в охране окружающей среды: определение и основные направления.
  12. Быстрое определение направлений

Цель работы: определить скорость звука в воздухе и длину волны методом фигур Лиссажу, определить показатель адиабаты.

Оборудование: звуковой генератор, трубка с телефоном и микрофоном, осциллограф, нагреватель.

 

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

 

Звук – это волны в упругой среде. В газах звуковые волны − это процесс распространения областей сжатия – разрежения.

Рассмотрим распространение звуковой волны в газе. Пусть мембрана телефона, находящаяся у основания воображаемой трубки с площадью сечения S, начала движение с дозвуковой скоростью U. Частицы газа, прилегающие к мембране, приходят в движение с такой же скоростью. Воздух перед мембраной сжимается и сжимает последующие слои газа. Граница между сжатым и невозмущенным газом, называемая фронтом, перемещается со скоростью звука V (рис. 1).

U
Применим для определения скорости звука уравнение второго закона Ньютона для движущейся массы газа: изменение импульса газа равно импульсу силы со стороны мембраны: dm U = F dt. Массу газа определим как произведение плотности на объем: dm = r dL∙S, а силу давления мембраны на газ как повышение давления на площадь: F = dp∙S. Примем, что отношение скоростей мембраны и фронта пропорционально отношению проходимых ими расстояний: , которое, в свою очередь, равно относительному изменению плотности газа. Подставив полученные преобразования в уравнение второго закона Ньютона, произведя замену dL=Vdt, получим уравнение . Вследствие кратковременности процессы сжатия – разрежения газа в звуковой волне происходят адиабатически, без теплообмена между нагретой областью сжатия и охлажденной областью разрежения. Поэтому применим уравнение Пуассона . Дифференцируя и подставляя, получим

. (1)

 

Здесь R = 8,31 Дж/ моль∙К – газовая постоянная, Т – абсолютная температура, М = 28,9 10 –3 кг/моль – масса моль воздуха, g = 1,4 – показатель адиабаты для двухатомных газов.

Запишем уравнение волны. Это уравнение зависимости параметра ψ (давления, смещения и т.д.)в некоторой точке пространства от времени и расстоянии Z до источника. Если колебания источника происходят по уравнению , то частицы среды начинают колебания позже, чем источник, на время распространения волны . Тогда уравнение волны примет вид

. (2)


Для экспериментального определения скорости звука в воздухе в данной работе используется метод фигур Лиссажу. Фигура Лиссажу− это повторяющаяся траектория движения точки, участвующей в двух взаимно перпендикулярных колебаниях. Она возникает, если соотношение частот равно отношению целых чисел.

В лабораторной установке на экране осциллографа наблюдается сложение электрических колебаний одинаковой частоты от телефона как источника звука, и от приемника – микрофона, которые подаются соответственно на горизонтальный x и вертикальный y входы осциллографа (рис. 2).

Рассмотрим частные случаи сложения двух взаимно перпендикулярных колебаний одинаковой частоты.

Пример 1. Пусть разность фаз кратна целому числу 2 p радиан, так что колебания происходят по уравнениям: x = A 1cos 2 pn t, y =A 2cos(2 pn t+ 2 πк) = A 2cos 2 pn t. Для получения уравнения траектории (фигуры Лиссажу) в явном виде y (x) исключим время t, например поделив уравнения. В результате получим . Это уравнение прямой линии (рис.3), проходящей через 1−3 квадранты в прямоугольнике со сторонами 2 А 2–2 А 1.

Пример 2. Пусть разность фаз кратна нечетному числу радиан, так что х= A 1cos2 pn t, y=A 2sin2 pn t. Исключим время t по соотношению . В результате получим для фигуры Лиссажу уравнение эллипса: , вписанного в прямоугольник 2 А 2 – 2 А 1.

 
 

Как видно, фигура Лиссажу зависит от разности фаз (рис.3).

При постоянном расстоянии между микрофоном и телефоном Z разность фаз слагаемых колебаний и фигура на экране осциллографа зависит частоты

или . (3)

Превращение эллипса опять в эллипс или прямойв такую же прямую линию происходит, если разность фаз возрастает на целое число 2 p радиан, то есть , где k = 0,1,2,3 целое число (оно равно увеличению числа длин волн в трубке). Подставив в уравнение (3) условие повторения фигуры Лиссажу, получим

 

или (4)

 

ВЫПОЛНЕНИЕ РАБОТЫ

 

Установка 1

1. Включить в сеть 220 В генератор и осциллограф. Установить частоту генератора около 400 Гц, среднее напряжение выхода. Регулятором температуры установить некоторый режим нагрева воздуха в трубке. Регулятором «Усиление» осциллографа получить на экране фигуру Лиссажу почти во весь экран.

2. Плавно изменяя частоту генератора, получить определенную фигуру, например, в виде прямой линии. Принять, что разности фаз колебаний телефона и микрофона соответствует некоторое неизвестное число k 0. Записать в таблицу частоту при k−k 0= 0.

3. Плавно изменяя частоту генератора, наблюдать превращение фигуры Лиссажу, как показано на рис. 3. Получить изображение исходной фигуры. Записать в таблицу возрастание числа k над исходным k 0и соответствующую частоту генератора. Опыт повторить не менее пяти раз.

Таблица

k − k 0          
ν, Гц          

Выключить приборы.

 

 

4. Построить график зависимости частоты генератора при повторении фигуры от числа k−k 0. Размер графика не менее половины страницы. На осях нанести равномерный масштаб. Около точек провести прямую линию (рис. 4).

5. Определить среднее значение скорости звука по угловому коэффициенту экспериментальной прямой. Для этого на экспериментальной линии как на гипотенузе построить прямоугольный треугольник (рис. 4). По координатам вершин треугольника определить среднее значение скорости

. (5)

6. Оценить случайную погрешность измерения . Записать результат V=<V>±δV, P= 0,9.

7. Сравнить с теоретическим значением скорости звука в воздухе, рассчитанным по формуле (1). Сделать выводы.

 

Установка 2

Работа производится так же, как на установке 1. При постоянной частоте генератора изменяется расстояние между телефоном и микрофоном. Скорость звука определяется по формуле .

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

 

1. Объясните процесс распространения звука в газах. Дайте понятие фронта волны.

2. Запишите формулу для скорости звуковых волн в газах. Объясните, почему процесс сжатия – разрежения газа в звуковой волне происходит адиабатически.

3. Запишите уравнение плоской волны. Дайте понятие фазы.

4. Дайте определение фигуры Лиссажу. Выведите уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях одинаковой частоты, при разности фаз 2 π k радиан.

5. Выведите уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях одинаковой частоты, при разности фаз p/2 рад.

6. При каком наименьшем изменении частоты генератора фигура Лиссажу принимает первоначальный вид.


Работа 15


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)