АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Условие перпендикулярности векторов

Читайте также:
  1. III. Векторное произведение векторов, заданных координатами
  2. MathCad: понятие массива, создание векторов и матриц.
  3. TARIFCND (Л. Условие тарифа)
  4. V2: ДЕ 14 – Векторные пространства. Коллинеарность векторов.
  5. Б) вычитание векторов.
  6. Билет 13 Угол между 2 мя прямыми , условия параллельности и перпендикулярности. Преобразование линейного оператора при переходе к новому базису
  7. Билет 6.Линейная зависимость и независимость векторов. Базис на плоскости и в пространстве
  8. Билет 7 Скалярное произведение векторов, проекция одного вектора на другой. Понятие линейного пространства и подпространства, критерии подпространства
  9. Билет10 Различные уравнения плоскости, угол между плоскостями. Вид матрицы линейного оператора в базисе из собственных векторов.
  10. Векторное и смешанное произведение векторов. Свойства и геометрический смысл. Вычисление через координаты векторов.
  11. Векторное произведение векторов
  12. Векторное произведение векторов.
  • Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
  • Даны два вектора a (xa;ya) и b (xb;yb). Эти векторы будут перпендикулярны, если выражение xaxb + yayb = 0.

Условие коллинеарности векторов

  • Векторы коллинеарны, если абсцисса первого вектора относится к абсциссе второго так же, как ордината первого — к ординате второго.
  • Даны два вектора a (xa;ya) и b (xb;yb). Эти векторы коллинеарны, если xa = xb и ya = yb, где R.

 

Собственные числа и собственные векторы матрицы.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)