АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Кинематика точки. Определить движение точки - это значит уметь определить положение точки по отношению к выбранной системе отсчета в любой момент времени

Читайте также:
  1. INBASE (Б. Инвентарные карточки)
  2. INVMBP (Б. Карточки МБП)
  3. MBPAMORT (Б. Карточки МБП - История начисления амортизации на МБП)
  4. А. Механизмы творчества с точки зрения З. Фрейда и его последователей
  5. Анализ факторов изменения точки безубыточности и зоны безопасности предприятия
  6. АНТРОПОМЕТРИЧЕСКИЕ ТОЧКИ ГОЛОВЫ ЧЕЛОВЕКА
  7. Антропометрические точки на голове
  8. Антропометрические точки на черепе
  9. Б. Механизмы творчества с точки зрения М. Кlein
  10. Более результативной с точки зрения определения победите-
  11. В. Механизмы творчества с точки зрения M Milner
  12. Вегетарианство с точки зрения анатомии

 

 

Определить движение точки - это значит уметь определить положение точки по отношению к выбранной системе отсчета в любой момент времени.

В кинематике применяются три способа задания движения точки: векторный, координатный и естественный.

При векторном способе определения движения точки радиус-вектор движущейся точки М (рис. 21), проведенный из выбранного неподвижного центра О, выражается как векторная функция от времени, т. е.

 

Рис. 21

Скорость точки, характеризующая быстроту и направление движения точки, равна производной по времени от ее радиуса-вектора:

 

 

Ускорение точки, характеризующее изменение скорости по модулю и направлению, равно производной по времени от вектора скорости:

 

 

Координатный способ определения (задания) движения точки состоит в том, что координаты движущейся точки в выбранной системе координат выражаются как функции времени t.

Уравнения движения точки в декартовых координатах имеют вид

 

x = x (t), y = y (t), z = z (t).

 

Если точка движется в плоскости О ху, то будем иметь только два уравнения движения:

 

x = x (t), y = y (t).

 

Для того чтобы найти траекторию точки, достаточно из уравнений движения исключить время t. Вектор скорости и вектор ускорения определяются по их проекциям на оси декартовых координат, причем

 

Отсюда получаем формулы разложения векторов скорости и ускорения по координатным осям:

 

 

 

Модули векторов скорости и ускорения вычисляем по формулам

 

 

 

При естественном способе движение точки задается ее траекторией и уравнением движения по этой траектории:

 

 

где О - начало отсчета дуг на траектории; s - дуговая координата точки М или взятая с соответствующим знаком длина дуги, отсчитываемая вдоль траектории от начала отсчета до точки М (рис. 22).

 

 

Рис. 22

Если заданы траектория движущейся точки и закон ее движения по этой траектории s = s (t), то вектор скорости направлен по касательной к этой траектории, а его проекция на направление касательной определяется по формуле

 

причем абсолютное значение этой проекции равно модулю скорости:

 

 

Вектор ускорения определяется по его проекциям на естественные оси (касательную, главную нормаль и бинормаль):

 

 

где r - радиус кривизны траектории в данной точке.

Следовательно,

 

Отметим частные случаи:

1. Если точка движется прямолинейно и неравномерно, то радиус кривизны траектории r ® µ и, следовательно, а n = 0. В этом случае ускорение направлено вдоль траектории точки и по модулю равно

 

 

2. Если точка движется по криволинейной траектории равномерно, то

 

V = const и

 

и поэтому ускорение направлено по нормали к траектории и по модулю равно

 

 

3. Если точка движется прямолинейно и равномерно, то a n = 0, a t = 0 и a = 0.

В том случае, когда движение точки задано в координатной форме, касательное ускорение определяется по формуле

 

, или

 

После этого нормальное ускорение можно найти из равенства

 

 

где

Определив , найдем радиус кривизны по формуле

 

 

Если плоская траектория задана уравнением у = у (х), то радиус кривизны траектории вычисляется по формуле

 

 

где и

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)