АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задача K1

Читайте также:
  1. VI. Общая задача чистого разума
  2. В задачах 13.1-13.20 даны выборки из некоторых генеральных совокупностей. Требуется для рассматриваемого признака
  3. ВАША ЗАДАЧА
  4. Вопрос 2 Проверка и оценка в задачах со случайными процессами на примере решения задач экозащиты, безопасности и риска.
  5. Вот дела не задача
  6. Глава 10 Системный подход к задачам управления. Управленческие решения
  7. ГЛАВА 2.1. ЗАЩИТА ИННОВАЦИЙ КАК ЗАДАЧА УПРАВЛЕНИЯ ИННОВАЦИОННЫМИ ПРОЦЕССАМИ
  8. Глава 4. Математические основы оптимального управления в экономических задачах массового обслуживания
  9. Двойственная задача
  10. Двойственная задача линейного программирования.
  11. Доклад о задачах власти Советов
  12. Доклад об экономическом положении рабочих Петрограда и задачах рабочего класса на заседании рабочей секции Петроградского совета рабочих и солдатских депутатов

 

Точка M движется в плоскости ху (рис. K1.0–K1.9, табл. K1; траектория точки на рисунках показана условно). Закон движения точки задан уравнениями х = f 1(t), у = f 2(t), где х и у выражены в сантиметрах, t в секундах.

Найти уравнение траектории точки; для момента времени t = 1 с определить скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.

Зависимость х = f (t) указана непосредственно на рисунках, а зависимость у = f 2(t) дана в табл. K1 (для рис. K1.0–K1.2 - в столбце 2, для рис. K1.3–K1.6 - в столбце 3, для рис. K1.7–K1.9 - в столбце 4).

Указания. Задача K1 относится к кинематике точки и решается с помощью формул, по которым определяются скорость и ускорение точки в декартовых координатах (координатный способ задания движения точки), а также формул, по которым определяются скорость, касательное и нормальное ускорения точки при естественном способе задания ее движения.

 

 
 
 

 

Рис. К1.0 Рис. К1.1 Рис. К1.2

 

 

 
 
 

 

Рис. К1.3 Рис. К1.4 Рис. К1.5

 

 

 
 
 

 

 

Рис. К1.6 Рис. К1.7 Рис. К1.8

 

 

 

 

Рис. К1.9

 

Таблица K1

 

  Номер условия у = f 2 (t)
  Рис. K1.0–K1.2   Рис. K1.3–K1.6   Рис. K1.7–K1.9
   
 
   
   
 
   
 
   
   
 

 

В задаче все искомые величины нужно определить только для момента времени t1 = 1 с. В некоторых вариантах задачи при определении траектории или при последующих расчетах (для их упрощения) следует учесть известные из тригонометрии формулы:

 

 

сos 2a = 1 – 2 sin2 a = 2 cos2 a – 1; sin 2a = 2×sin a×cos a.

 

Пример K1. Даны уравнения движения точки в плоскости ху:

 

x = 6×cos (p×t/6) – 3, y = – 4×cos2 (p×t/6)

 

(х, у - в метрах, t - в секундах).

Определить уравнение траектории точки. Для момента времени t1 = 1 с найти скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.

Решение. Для определения траектории исключим из заданных уравнений движения время t, воспользовавшись подстановкой:

 

 

 

Из полученного выражения следует, что траекторией движения точки является парабола с нисходящими ветвями и осью, параллельной оси у; вершина параболы находится в точке с координатами х = -3 м, у = 0.

Найдем проекции вектора скорости на оси координат:

 

 

 

Подставив t1 = 1 с в полученные выражения, находим

 

 

Скорость точки в момент времени t1 = 1 с

 

 

Найдем проекции вектора ускорения:

 

 

 

Для момента времени t1 = 1 с

 

 

м/с2.

 

Касательное ускорение найдем по формуле

 

м/с2.

 

Нормальное ускорение

 

м/с2.

 

Вычислим радиус кривизны траектории в том месте, где находится точка в момент времени t1 = 1 с:

 

м.

 

 

 

Рис. K1

 

Пользуясь уравнением траектории, вычерчиваем параболу (рис. K1) и показываем на ней точку М в заданный момент времени по ее координатам. Вектор скорости строим по составляющим и ; он должен быть направлен по касательной к траектории. Вектор ускорения находим по его составляющим и . Далее найденный вектор раскладываем на направления касательной и нормали и получаем векторы касательного и нормального ускорений. Полученные таким образом значения и должны совпасть с результатами их подсчета по формулам.

 

Вопросы для самоконтроля

 

1. Что называется траекторией точки?

2. Какие существуют способы задания движения и в чем заключается каждый из них?

3. Как при координатном способе задания движения точки определяется ее траектория?

4. Как найти проекции векторов скорости и ускорения точки на оси декартовой системы координат?

5. Как вычислить модули векторов скорости и ускорения точки по их проекциям на координатные оси?

6. Как определяются и что характеризуют нормальное и касательное ускорения точки?

7. Как найти радиус кривизны траектории в какой-либо ее точке?

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.)