|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Задача С4
Две однородные прямоугольные тонкие плиты жестко соединены (сварены) под прямым углом друг к другу и закреплены сферическим шарниром (или подпятником) в точке А, цилиндрическим шарниром (подшипником) в точке В и невесомым стержнем 1 (рис. С4.0-С4.7) или же двумя подшипниками в точках А и В и двумя невесомыми стержнями 1 и 2 (рис. С4.8, С4.9); все стержни прикреплены к плитам и к неподвижным опорам шарнирами. Размеры плит указаны на рисунках; вес большей плиты P1 = 5 кН, вес меньшей плиты P2 = 3 кН. Каждая из плит расположена параллельно одной из координатных плоскостей (плоскость ху - горизонтальная). На плиты действуют пара сил с моментом М = 4 кН×м, лежащая в плоскости одной из плит, и две силы. Значения этих сил, их направления и точки приложения указаны в табл. С4; при этом силы и лежат в плоскостях, параллельных плоскости ху, сила - в плоскости, параллельной хz, и сила - в плоскости, параллельной уz. Точки приложения сил (D, E, Н, K) находятся в углах или в серединах сторон плит. Определить реакции связей в точках А и В и реакцию стержня (стержней). При подсчетах принять а = 0,6 м. Указания. Задача С4 - на равновесие тела под действием произвольной пространственной системы сил. При ее решении учесть, что реакция сферического шарнира (подпятника) имеет три составляющие (по всем трем координатным осям), а реакция цилиндрического шарнира (подшипника) - две составляющие, лежащие в плоскости, перпендикулярной оси шарнира (подшипника). При вычислении момента силы часто удобно разложить ее на две составляющие ( и ), параллельные координатным осям (или на три); тогда по теореме Вариньона и т. д.
Рис. С4.0 Рис. С4.1
Рис. С4.2 Рис. С4.3
Рис. С4.4 Рис. С4.5
Рис. С4.6 Рис. С4.7
Рис. С4.8 Рис. С4.9 Пример С4. Горизонтальная прямоугольная плита весом Р (рис. С4) закреплена сферическим шарниром в точке А, цилиндрическим (подшипником) в точке В и невесомым стержнем DD¢. На плиту в плоскости, параллельной хz, действует сила , а в плоскости, параллельной уz, - пара сил с моментом М. Дано: Р = 3 кН, F = 8 кН, М = 4 кН×м, a = 60°, АС = 0,8 м, АВ = 1,2 м, ВЕ = 0,4 м, ЕН = 0,4 м. Определить реакции опор А, В и стержня DD'.
Рис. С4
Решение. 1. Рассмотрим равновесие плиты. На плиту действуют заданные силы , и пара с моментом , а также реакции связей. Реакцию сферического шарнира разложим на три составляющие: , , , цилиндрического (подшипника) – на две составляющие: , , (в плоскости, перпендикулярной оси подшипника); реакцию стержня направляем вдоль стержня от D к D¢, предполагая, что он растянут. 2. Для определения шести неизвестных реакций составляем шесть уравнений равновесия действующей на плиту пространственной системы сил:
(19)
(20)
(21)
(22)
(23)
(24) Таблица С4
Для определения моментов силы относительно осей разлагаем ее на составляющие и , параллельные осям x и z (, ), и применяем теорему Вариньона. Аналогично поступаем с реакцией (; ). Из уравнения (23) находим:
Из уравнения (24):
Из уравнения (22):
Из уравнения (19):
Из уравнения (20):
Из уравнения (21):
Ответ: RA x = 3,422 кН, RA у = 5,133 кН, RA z = 4,834 кН, RВ x = - 7,422 кН, RВ z = 2,13 кН, N = 5,928 кН.
Знак «минус» указывает, что реакция направлена противоположно показанной на рис. С4.
Вопросы для самоконтроля
1. Как определить момент силы относительно оси? 2. В каких случаях момент силы относительно оси равен нулю? 3. Как представить вектор-момент пары сил, расположенной в пространстве? 4. Как складываются пары сил в пространстве? 5. Как вычислить главный вектор и главный момент пространственной произвольной системы сил? 6. Каковы условия и уравнения равновесия произвольной пространственной системы сил?
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.) |