|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Задача К3
Прямоугольная пластина (рис. К3.0–К3.4) или круглая пластина радиуса R = 60 см (рис. К3.5–К3.9) вращается вокруг неподвижной оси по закону j = f1 (t), заданному в табл. К3. Положительное направление отсчета угла j показано на рисунках дуговой стрелкой. На рис. К3.0, К3.1, К3.2, К3.5, К3.6 ось вращения перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на рис. К3.3, К3.4, К3.7, К3.8, К3.9 ось вращения О1О лежит в плоскости пластины (пластина вращается в пространстве). По пластине вдоль прямой ВD (рис. К3.0–К3.4) или по окружности радиуса R (рис. К3.5–К3.9) движется точка М; закон ее относительного движения, т. е. зависимость s = AM = f 2 (t) (s выражено в сантиметрах, t – в секундах), задан в табл. К3 отдельно для рис. К3.0–К3.4 и для рис. К3.5–К3.9; там же даны размеры b и l. На рисунках точка М показана в положении, при котором s = AM > 0 (при s < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с. Указания. Задача К3 – на сложное движение точки. Для ее решения воспользоваться теоремами о сложении скоростей и о сложении ускорений. Прежде чем производить все расчеты, следует по условиям задачи определить, где находится точка М на пластине в момент времени t1 = 1 с, и изобразить точку именно в этом положении (а не в произвольном, показанном на рисунках к задаче). В случаях, относящихся к рис. К3.5–К3.9, при решении задачи не подставлять числового значения R, пока не будут определены положение точки М в момент времени t1 = 1 с и угол между радиусами СМ и СA в этот момент.
Таблица К3
Рис. К3.0 Рис. К3.1 Рис. К3.2
Рис. К3.3 Рис. К3.4 Рис. К3.5
Рис. К3.6 Рис. К3.7
Рис. К3.8 Рис. К3.9
Рассмотрим два примера решения этой задачи. Пример К3а. Пластина OEAB1D (OE = OD, рис. К3а) вращается вокруг оси, проходящей через точку О перпендикулярно плоскости пластины, по закону j = f 1(t) (положительное направление отсчета угла j показано на рис. К3а дуговой стрелкой). По дуге окружности радиуса R движется точка В по закону s = = f 2(t) (положительное направление отсчета s – от A к B). Дано: R = 0,5 м, j = t2 - 0,5t3, s = p×R×cos(pt/3) (j - в радианах, s - в метрах, t - в секундах). Определить: и в момент времени t1 = 2 с. Решение. Рассмотрим движение точки В как сложное, считая ее движение по дуге окружности относительным, а вращение пластины – переносным движением. Тогда абсолютная скорость и абсолютное ускорение точки найдутся по формулам: = + ,
= + + , (58) где, в свою очередь,
= + , = + .
Рис. К3а
Определим все входящие в равенства (58) величины. 1. Относительное движение. Это движение происходит по закону
s = = p×R× cos(pt/3). (59)
Сначала установим, где будет находиться точка В на дуге окружности в момент времени t1. Полагая в уравнении (59) t1 = 2 с, получаем
s = p×R× cos(2p/3) = - 0,5pR.
Тогда
Знак минус свидетельствует о том, что точка В в момент t1 = 2 с находится справа от точки А. Изображаем ее на рис. К3а в этом положении (точка В1). Теперь находим числовые значения , , :
,
, где rотн – радиус кривизны относительной траектории, равный радиусу окружности R. Для момента t1 = 2 с, учитывая, что R = 0,5 м, получаем
м/с,
м/с2, м/с2. (60)
Знаки показывают, что вектор направлен в сторону положительного отсчета расстояния s, а вектор – в противоположную сторону; вектор направлен к центру С окружности. Изображаем все эти векторы на рис. К3а. 2. Переносное движение. Это движение (вращение) происходит по закону j = t2 – 0,5×t3. Найдем сначала угловую скорость w и угловое ускорение e переносного вращения:
= 2×t – 1,5×t2, = 2 – 3×t;
и при t1 = 2 с w = – 2 c–1, e = – 4 с–2. (61)
Знаки указывают, что в момент t1 = 2 с направления w и e противоположны направлению положительного отсчета угла j; отметим это на рис. К3а. Для определения и находим сначала расстояние h 1 = OB1точки B1 от оси вращения О. Из рисунка видно, что h1 = 2R× = 1,41 м. Тогда в момент времени t1 = 2 с, учитывая равенства (61), получим
Vпер = |w|×h1 = 2,82 м/с,
= |e|×h1 = 5,64 м/с2, = w2×h1 = 5,64 м/с2. (62)
Изображаем на рис. К3а векторы и с учетом направлений w и e и вектор (направлен к оси вращения). 3. Кориолисово ускорение. Модуль кориолисова ускорения определяем по формуле а кор = 2× |Vотн| × |w| × sin a, где a – угол между вектором и осью вращения (вектором ). В нашем случае этот угол равен 90°, так как ось вращения перпендикулярна плоскости пластины, в которой расположен вектор . Численно в момент времени t1 = 2 с, так как в этот момент |Vотн| = 1,42 м/с и |w| = 2 с-1, получим
а кор = 5,68 м/с2. (63) Направление найдем по правилу Н. Е. Жуковского: так как вектор лежит в плоскости, перпендикулярной оси вращения, то повернем его на 90° в направлении w, т. е. по ходу часовой стрелки. Изображаем на рис. К3а. (Иначе направление можно найти, учтя, что = 2×( ´ ). Таким образом, значения всех входящих в правые части равенств (58) векторов найдены и для определения Vабс и а абс остается только сложить эти векторы. Произведем это сложение аналитически. 4. Определение Vабс. Проведем координатные оси В1ху(см. рис. К3 а) и спроектируем почленно обе части равенства = + на эти оси. Получим для момента времени t 1 = 2 с:
Vабс х = Vотн х + Vпер х = 0 - |Vпер| × сos 45° = - 1,99 м/с,
Vабс у = Vотн у + Vпер у = |Vотн| + |Vпер| × сos 45° = 3,41 м/с.
После этого находим м/с.
Учитывая, что в данном случае угол между и равен 45°, значение Vабс можно еще определить по формуле
м/с.
5. Определение а абс. По теореме о сложении ускорений
= + + + + . (64)
Для определения спроецируем обе части равенства (64) напроведенные оси В1ху. Получим:
а абс х = + а кор + × cos 45° - | |× cos 45°,
а абс y = × cos 45° + | |× cos 45° - | |.
Подставив сюда значения, которые все величины имеют в момент времени t1 = 2 с, найдем, что в этот момент
а абс х = 9,74 м/с2; а абс y = 7,15 м/с2.
Тогда
м/с2.
Ответ: Vабс = 3,95 м/с, а абс = 12,08 м/с2. Пример К3б. Треугольная пластина ADE вращается вокруг оси z по закону j = f 1(t) (положительное направление отсчета угла j показано на рис. К3б дуговой стрелкой). По гипотенузе AD движется точка Впо закону s = АВ = f 2(t); положительное направление отсчета s – от А к D. Дано: j = 0,1× t3–2,2× t, s = АВ = 2 + 15× t – 3×t2; (j – в радианах, s – в сантиметрах, t – в секундах). Определить: Vабс и а абс в момент времени t1 = 2 с. Решение. Рассмотрим движение точки В как сложное, считая ее движение по прямой AD относительным, а вращение пластины – переносным. Тогда абсолютная скорость и абсолютное ускорение найдутся по формулам: = + , = + + , (65)
где, в свою очередь, = + . Определим все входящие в равенство (65) величины. 1. Относительное движение - это движение прямолинейное и происходит по закону s = AB = 2 + 15t - 3t2, (66) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.017 сек.) |