АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задача К3

Читайте также:
  1. VI. Общая задача чистого разума
  2. В задачах 13.1-13.20 даны выборки из некоторых генеральных совокупностей. Требуется для рассматриваемого признака
  3. ВАША ЗАДАЧА
  4. Вопрос 2 Проверка и оценка в задачах со случайными процессами на примере решения задач экозащиты, безопасности и риска.
  5. Вот дела не задача
  6. Глава 10 Системный подход к задачам управления. Управленческие решения
  7. ГЛАВА 2.1. ЗАЩИТА ИННОВАЦИЙ КАК ЗАДАЧА УПРАВЛЕНИЯ ИННОВАЦИОННЫМИ ПРОЦЕССАМИ
  8. Глава 4. Математические основы оптимального управления в экономических задачах массового обслуживания
  9. Двойственная задача
  10. Двойственная задача линейного программирования.
  11. Доклад о задачах власти Советов
  12. Доклад об экономическом положении рабочих Петрограда и задачах рабочего класса на заседании рабочей секции Петроградского совета рабочих и солдатских депутатов

 

 

Прямоугольная пластина (рис. К3.0–К3.4) или круглая пластина радиуса R = 60 см (рис. К3.5–К3.9) вращается вокруг неподвижной оси по закону j = f1 (t), заданному в табл. К3. Положительное направление отсчета угла j показано на рисунках дуговой стрелкой. На рис. К3.0, К3.1, К3.2, К3.5, К3.6 ось вращения перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на рис. К3.3, К3.4, К3.7, К3.8, К3.9 ось вращения О1О лежит в плоскости пластины (пластина вращается в пространстве).

По пластине вдоль прямой ВD (рис. К3.0–К3.4) или по окружности радиуса R (рис. К3.5–К3.9) движется точка М; закон ее относительного движения, т. е. зависимость s = AM = f 2 (t) (s выражено в сантиметрах, t в секундах), задан в табл. К3 отдельно для рис. К3.0–К3.4 и для рис. К3.5–К3.9; там же даны размеры b и l. На рисунках точка М показана в положении, при котором s = AM > 0 (при s < 0 точка М находится по другую сторону от точки А).

Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

Указания. Задача К3 – на сложное движение точки. Для ее решения воспользоваться теоремами о сложении скоростей и о сложении ускорений. Прежде чем производить все расчеты, следует по условиям задачи определить, где находится точка М на пластине в момент времени t1 = 1 с, и изобразить точку именно в этом положении (а не в произвольном, показанном на рисунках к задаче).

В случаях, относящихся к рис. К3.5–К3.9, при решении задачи не подставлять числового значения R, пока не будут определены положение точки М в момент времени t1 = 1 с и угол между радиусами СМ и СA в этот момент.

 

Таблица К3

 

  Номер условия Для всех рисунков j = f 1(t) Для рис. К3.0-К3.4 Для рис. К3.5-К3.9
  b, см   s = AM = f 2 (t)   l s = = f 2(t)
  4×(t2 - t)   50×(3×t - t2) - 64 R p×R×(4t2 - 2t3)/3
  3t2 - 8t   40×(3×t2 - t4) - 32 4R/3 p×R×(2t2 - t3)/2
  6t3 - 12t2   80×(t2 - t) + 40 R p×R×(2t2 - 1)/3
  t2 - 2t3   60×(t4 - 3t2) + 56 R p×R×(3t - t2)/6
  10t2 - 5t3   80×(2t2 - t3) - 48 R p×R×(t3 - 2t)/3
  2×(t2 - t)   60×(t3 - 2t2) R p×R×(t3 - 2t)/6
  5t - 4t2   40×(t2 - 3t) + 32 3R/4 p×R×(t3 - 2t2)/2
  15t - 3t3   60×(t - t3) + 24 R p×R×(t - 5t2)/6
  2t3 - 11t   50×(t3 - t) - 30 R p×R×(3t2 - t)/3
  6t2 - 3t3   40×(t - 2t3) - 40 4R/3 p×R×(t - 2t2)/2

 

 

 

 

Рис. К3.0 Рис. К3.1 Рис. К3.2

 

 

Рис. К3.3 Рис. К3.4 Рис. К3.5

 

Рис. К3.6 Рис. К3.7

 

 

Рис. К3.8 Рис. К3.9

 

Рассмотрим два примера решения этой задачи.

Пример К3а. Пластина OEAB1D (OE = OD, рис. К3а) вращается вокруг оси, проходящей через точку О перпендикулярно плоскости пластины, по закону j = f 1(t) (положительное направление отсчета угла j показано на рис. К3а дуговой стрелкой). По дуге окружности радиуса R движется точка В по закону s = = f 2(t) (положительное направление отсчета s – от A к B).

Дано: R = 0,5 м, j = t2 - 0,5t3, s = p×R×cos(pt/3) (j - в радианах, s - в метрах, t - в секундах). Определить: и в момент времени t1 = 2 с.

Решение. Рассмотрим движение точки В как сложное, считая ее движение по дуге окружности относительным, а вращение пластины – переносным движением. Тогда абсолютная скорость и абсолютное ускорение точки найдутся по формулам:

= + ,

 

= + + , (58)

где, в свою очередь,

 

= + , = + .

 

 

Рис. К3а

 

Определим все входящие в равенства (58) величины.

1. Относительное движение. Это движение происходит по закону

 

s = = p×R× cos(pt/3). (59)

 

Сначала установим, где будет находиться точка В на дуге окружности в момент времени t1. Полагая в уравнении (59) t1 = 2 с, получаем

 

s = p×R× cos(2p/3) = - 0,5pR.

 

Тогда

 

Знак минус свидетельствует о том, что точка В в момент t1 = 2 с находится справа от точки А. Изображаем ее на рис. К3а в этом положении (точка В1).

Теперь находим числовые значения , , :

 

,

 

,

где rотн – радиус кривизны относительной траектории, равный радиусу окружности R. Для момента t1 = 2 с, учитывая, что R = 0,5 м, получаем

 

м/с,

 

м/с2, м/с2. (60)

 

Знаки показывают, что вектор направлен в сторону положительного отсчета расстояния s, а вектор – в противоположную сторону; вектор направлен к центру С окружности. Изображаем все эти векторы на рис. К3а.

2. Переносное движение. Это движение (вращение) происходит по закону j = t2 – 0,5×t3. Найдем сначала угловую скорость w и угловое ускорение e переносного вращения:

 

= 2×t – 1,5×t2, = 2 – 3×t;

 

и при t1 = 2 с

w = – 2 c–1, e = – 4 с–2. (61)

 

Знаки указывают, что в момент t1 = 2 с направления w и e противоположны направлению положительного отсчета угла j; отметим это на рис. К3а.

Для определения и находим сначала расстояние h 1 = OB1точки B1 от оси вращения О. Из рисунка видно, что h1 = 2R× = 1,41 м. Тогда в момент времени t1 = 2 с, учитывая равенства (61), получим

 

Vпер = |w|×h1 = 2,82 м/с,

 

= |e|×h1 = 5,64 м/с2, = w2×h1 = 5,64 м/с2. (62)

 

Изображаем на рис. К3а векторы и с учетом направлений w и e и вектор (направлен к оси вращения).

3. Кориолисово ускорение. Модуль кориолисова ускорения определяем по формуле а кор = 2× |Vотн| × |w| × sin a, где a – угол между вектором и осью вращения (вектором ). В нашем случае этот угол равен 90°, так как ось вращения перпендикулярна плоскости пластины, в которой расположен вектор . Численно в момент времени t1 = 2 с, так как в этот момент |Vотн| = 1,42 м/с и |w| = 2 с-1, получим

 

а кор = 5,68 м/с2. (63)

Направление найдем по правилу Н. Е. Жуковского: так как вектор лежит в плоскости, перпендикулярной оси вращения, то повернем его на 90° в направлении w, т. е. по ходу часовой стрелки. Изображаем на рис. К3а. (Иначе направление можно найти, учтя, что = 2×( ´ ).

Таким образом, значения всех входящих в правые части равенств (58) векторов найдены и для определения Vабс и а абс остается только сложить эти векторы. Произведем это сложение аналитически.

4. Определение Vабс. Проведем координатные оси В1ху(см. рис. К3 а) и спроектируем почленно обе части равенства = + на эти оси. Получим для момента времени t 1 = 2 с:

 

Vабс х = Vотн х + Vпер х = 0 - |Vпер| × сos 45° = - 1,99 м/с,

 

Vабс у = Vотн у + Vпер у = |Vотн| + |Vпер| × сos 45° = 3,41 м/с.

 

После этого находим

м/с.

 

Учитывая, что в данном случае угол между и равен 45°, значение Vабс можно еще определить по формуле

 

м/с.

 

5. Определение а абс. По теореме о сложении ускорений

 

= + + + + . (64)

 

Для определения спроецируем обе части равенства (64) напроведенные оси В1ху. Получим:

 

а абс х = + а кор + × cos 45° - | |× cos 45°,

 

а абс y = × cos 45° + | |× cos 45° - | |.

 

Подставив сюда значения, которые все величины имеют в момент времени t1 = 2 с, найдем, что в этот момент

 

а абс х = 9,74 м/с2; а абс y = 7,15 м/с2.

 

Тогда

 

м/с2.

 

Ответ: Vабс = 3,95 м/с, а абс = 12,08 м/с2.

Пример К3б. Треугольная пластина ADE вращается вокруг оси z по закону j = f 1(t) (положительное направление отсчета угла j показано на рис. К3б дуговой стрелкой). По гипотенузе AD движется точка Впо закону s = АВ = f 2(t); положительное направление отсчета s – от А к D.

Дано: j = 0,1× t3–2,2× t, s = АВ = 2 + 15× t – 3×t2; (j – в радианах, s – в сантиметрах, t – в секундах). Определить: Vабс и а абс в момент времени t1 = 2 с.

Решение. Рассмотрим движение точки В как сложное, считая ее движение по прямой AD относительным, а вращение пластины – переносным. Тогда абсолютная скорость и абсолютное ускорение найдутся по формулам:

= + , = + + , (65)

 

где, в свою очередь, = + .

Определим все входящие в равенство (65) величины.

1. Относительное движение - это движение прямолинейное и происходит по закону

s = AB = 2 + 15t - 3t2, (66)


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.017 сек.)