АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теория двойственности

Читайте также:
  1. ERG – теория Альдерфера
  2. I. 4.1. Первая теорема двойственности
  3. I. Теория естественного права
  4. I. ТЕОРИЯ КУЛЬТУРЫ
  5. I.1.5. Философия как теория и
  6. II. Теория легизма Шан Яна
  7. IS-LM как теория совокупного спроса. Сравнительная характеристика монетарной и фискальной политики в закрытой экономике.
  8. V. Социологическая теория
  9. V2: Специальная теория относительности
  10. А) Теория иерархии потребностей
  11. Австрийская школа. Теория предельной полезности
  12. Административная теория А. Файоля

Понятие двойственности рассмотрим на примере задачи оптимального использования сырья. Пусть на предприятии решили рационально использовать отходы основного производства. В плановом периоде появились отходы сырья m видов в объемах единиц . Из этих отходов, учитывая специализацию предприятия, можно наладить выпуск n видов неосновной продукции. Обозначим через норму расхода сырья i-го вида на единицу j-й продукции, - цена реализации единицы j-й продукции (реализация обеспечена). Неизвестные величины задачи: объемы выпуска j -й продукции, обеспечивающие предприятию максимум выручки.
Математическая модель задачи:
(23)
(24)
(25)
Предположим далее, что с самого начала при изучении вопроса об использовании отходов основного производства на предприятии появилась возможность реализации их некоторой организации. Необходимо установить прикидочные оценки (цены) на эти отходы. Обозначим их .
Оценки должны быть установлены исходя из следующих требований, отражающих несовпадающие интересы предприятия и организации:
1) общую стоимость отходов сырья покупающая организация стремится минимизировать;
2) предприятие согласно уступить отходы только по таким ценам, при которых оно получит за них выручку, не меньшую той, что могло бы получить, организовав собственное производство.
Эти требования формализуются в виде следующей ЗЛП.
Требование 1 покупающей организации – минимизация покупки:
(26)
Требование 2 предприятия, реализующего отходы сырья, можно сформулировать в виде системы ограничений. Предприятие откажется от выпуска каждой единицы продукции первого вида, если , где левая часть означает выручку за сырьё идущее на единицу продукции первого вида; правая – её цену.
Аналогичные рассуждения логично провести в отношении выпуска продукции каждого вида. Поэтому требование предприятия, реализующего отходы сырья, можно формализовать в виде сл. системы ограничений:
(27)
По смыслу задачи оценки не должны быть отрицательными:
. (28)
Переменные называют двойственными оценками или объективно обусловленными оценками.
Задачи (23) - (25) и (26) - (28) называют парой взаимно двойственных ЗЛП.
Между прямой и двойственной задачами можно установить следующую взаимосвязь:
1. Если прямая задача на максимум, то двойственная к ней — на минимум, и наоборот.
Коэффициенты целевой функции прямой задачи являются свободными членами ограничений двойственной задачи.
3. Свободные члены ограничений прямой задачи являются коэффициентами целевой функции двойственной.
4. Матрицы ограничений прямой и двойственной задач являются транспонированными друг к другу.
5. Если прямая задача на максимум, то ее система ограничений представляется в виде неравенств типа . Двойственная задача решается на минимум, и ее система ограничений имеет вид неравенств типа .
6. Число ограничений прямой задачи равно числу переменных двойственной, а число ограничений двойственной — числу переменных прямой.
7. Все переменные в обеих задачах неотрицательны.

Основные теоремы двойственности и их экономическое содержание

Теорема. Для любых допустимых планов и прямой и двойственной ЗЛП справедливо неравенство , т.е.
(29)
– основное неравенство теории двойственности.
Теорема (критерий оптимальности Канторовича).
Если для некоторых допустимых планов и пары двойственных задач выполняется неравенство , то и являются оптимальными планами соответствующих задач.
Теорема (малая теорема двойственности).
Для существования оптимального плана любой из пары двойственных задач необходимо и достаточно существование допустимого плана для каждой из них.
Теорема. Если одна из двойственных задач имеет оптимальное решение, то и другая имеет оптимальное решение, причем экстремальные значения целевых функций равны: . Если одна из двойственных задач неразрешима вследствие неограниченности целевой функции на множестве допустимых решений, то система ограничений другой задачи противоречива.
Экономическое содержание первой теоремы двойственности состоит в следующем: если задача определения оптимального плана, максимизирующего выпуск продукции, разрешима, то разрешима и задача определения оценок ресурсов. Причем цена продукции, полученной при реализации оптимального плана, совпадает с суммарной оценкой ресурсов. Совпадение значений целевых функций для соответствующих планов пары двойственных задач достаточно для того, чтобы эти планы были оптимальными. Это значит, что план производства и вектор оценок ресурсов являются оптимальными тогда и только тогда, когда цена произведенной продукции и суммарная оценка ресурсов совпадают. Оценки выступают как инструмент балансирования затрат и результатов. Двойственные оценки, обладают тем свойством, что они гарантируют рентабельность оптимального плана, т. е. равенство общей оценки продукции и ресурсов, и обусловливают убыточность всякого другого плана, отличного от оптимального. Двойственные оценки позволяют сопоставить и сбалансировать затраты и результаты системы.
Теорема (о дополняющей нежесткости)
Для того, чтобы планы и пары двойственных задач были оптимальны, необходимо и достаточно выполнение условий:
(30)
(31)
Условия (30), (31) называются условиями дополняющей нежесткости. Из них следует: если какое-либо ограничение одной из задач ее оптимальным планом обращается в строгое неравенство, то соответствующая компонента оптимального плана двойственной задачи должна равняться нулю; если же какая-либо компонента оптимального плана одной из задач положительна, то соответствующее ограничение в двойственной задаче ее оптимальным планом должно обращаться в строгое равенство.
Экономически это означает, что если по некоторому оптимальному плану производства расход i -го ресурса строго меньше его запаса , то в оптимальном плане соответствующая двойственная оценка единицы этого ресурса равна нулю. Если же в некотором оптимальном плане оценок его i -я компонента строго больше нуля, то в оптимальном плане производства расход соответствующего ресурса равен его запасу. Отсюда следует вывод: двойственные оценки могут служить мерой дефицитности ресурсов. Дефицитный ресурс (полностью используемый по оптимальному плану производства) имеет положительную оценку, а ресурс избыточный (используемый не полностью) имеет нулевую оценку.
Теорема (об оценках). Двойственные оценки показывают приращение функции цели, вызванное малым изменением свободного члена соответствующего ограничения задачи математического программирования, точнее
(32)


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)