|
|||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Задание 1. Формализация задач линейного программированияПример 1.1. Фабрика выпускает продукцию двух видов: П1 и П2. Продукция обоих видов поступает в оптовую продажу. Для производства этой продукции используются три исходных продукта - A, B, C. Максимально возможные суточные запасы этих продуктов составляют 6, 8 и 5 т соответственно. Расходы сырья A, B, C на 1 тыс. изделий П1 и П2 приведены в табл. 1.1. Изучение рынка сбыта показало, что суточный спрос на изделия П2 никогда не превышает спроса изделия П1 более чем на 1 тыс. шт. Кроме того, установлено, что спрос на изделия П2 никогда не превышает 2 тыс. шт. в сутки. Оптовые цены за 1 тыс. шт. изделий равны, соответственно, П1 - 3 тыс. руб., П2 - 2 тыс. руб. Таблица 1.1
Необходимо спланировать производство так, чтобы доход от реализации продукции фабрики был максимальным?
Построение математической модели следует начать с идентификации переменных (искомых величин), но так, чтобы после этого целевая функция и ограничения могли быть выражены через соответствующие переменные. В рассматриваемом примере имеем следующее: Переменные. Так как нужно максимизировать прибыль, а она зависит от объемов производства каждого вида продукции, то переменными являются: - суточный объем производства изделия П1 в тыс. шт.; - суточный объем производства изделия П2 в тыс. шт.
Целевая функция. Так как стоимость 1 тыс. изделий П1 равна 3 тыс. руб., суточный доход от ее продажи составит 3 тыс. руб. Аналогично доход от реализации тыс. шт. П2 составит 2 тыс. руб. в сутки. При допущении независимости объемов сбыта каждого из изделий общий доход равен сумме двух слагаемых - дохода от продажи изделий П1 и дохода от продажи изделий П2. Обозначив доход (в тыс. руб.) через , можно дать следующую математическую формулировку целевой функции: определить (допустимые) значения и , максимизирующие величину общего дохода: ,
Ограничения. При решении рассматриваемой задачи должны быть учтены ограничения на расход исходных продуктов A, B и С и спрос на изготовляемую продукцию, что можно записать так:
Это приводит к трем ограничениям: + 2 6 (для А), 2 + 8 (для В), + 0.8 5 (для С). Ограничения на величину спроса на продукцию имеют вид: - 1 (соотношение величин спроса на изделия П1 и П2), 2 (максимальная величина спроса на изделия П2). Вводятся также условия неотрицательности переменных, т. е. ограничения на их знак: 0 (объем производства П1), 0 (объем производства П2). Эти ограничения заключаются в том, что объемы производства продукции не могут принимать отрицательных значений. Следовательно, математическая модель записывается следующим образом. Определить суточные объемы производства ( и ) изделий П1 и П2 в тыс. шт., при которых достигается при наличии ограничений Математическая модель задачи получена. Отметим, что на 3 этапе исследования операций следует выбрать метод решения задачи, для чего её нужно отнести к некоторому классу задач. Полученная модель относится к задачам линейного программирования, так как целевая функция и функции ограничений – линейные, а на переменные наложено ограничение неотрицательности. Следовательно, решить задачу, провести анализ полученного решения можно с помощью методов решения задач линейного программирования, которые будут рассмотрены ниже.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |