АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Графический способ решения ЗЛП
Геометрическая интерпретация экономических задач дает возможность наглядно представить, их структуру, выявить особенности и открывает пути исследования более сложных свойств. ЗЛП с двумя переменными всегда можно решить графически. Однако уже в трехмерном пространстве такое решение усложняется, а в пространствах, размерность которых больше трех, графическое решение, вообще говоря, невозможно. Случай двух переменных не имеет особого практического значения, однако его рассмотрение проясняет свойства ОЗЛП, приводит к идее ее решения, делает геометрически наглядными способы решения и пути их практической реализации. Пусть дана задача (11) (12) (13) Дадим геометрическую интерпретацию элементов этой задачи. Каждое из ограничений (12), (13) задает на плоскости некоторую полуплоскость. Полуплоскость — выпуклое множество. Но пересечение любого числа выпуклых множеств является выпуклым множеством. Отсюда следует, что область допустимых решений задачи (11) — (13) есть выпуклое множество. Перейдем к геометрической интерпретации целевой функции. Пусть область допустимых решений ЗЛП — непустое множество, например многоугольник . Выберем произвольное значение целевой функции . Получим . Это уравнение прямой линии. В точках прямой NМ целевая функция сохраняет одно и то же постоянное значение . Считая в равенстве (11) параметром, получим уравнение семейства параллельных прямых, называемых линиями уровня целевой функции (линиями постоянного значения). Найдём частные производные целевой функции по и : , (14) . (15) Частная производная (14) (так же как и (15)) функции показывает скорость ее возрастания вдоль данной оси. Следовательно, и — скорости возрастания соответственно вдоль осей и . Вектор называется градиентом функции. Он показывает направление наискорейшего возрастания целевой функции: Вектор указывает направление наискорейшего убывания целевой функции. Его называют антиградиентом. Вектор перпендикулярен к прямым семейства . Из геометрической интерпретации элементов ЗЛП вытекает следующий порядок ее графического решения. 1. С учетом системы ограничений строим область допустимых решений . Строим вектор наискорейшего возрастания целевой функции — вектор градиентного направления. 3. Проводим произвольную линию уровня . 4. При решении задачи на максимум перемещаем линию уровня в направлении вектора так, чтобы она касалась области допустимых решений в ее крайнем положении (крайней точке). В случае решения задачи на минимум линию уровня перемещают в антиградиентном направлении. 5. Определяем оптимальный план и экстремальное значение целевой функции . 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | Поиск по сайту:
|