|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Приклади. 1). Знайти загальний розв‘язок рівняння
1). Знайти загальний розв‘язок рівняння . Запишемо початкове рівняння у виді . Позначимо , тоді або, розділяючи змінні, знаходимо звідки і , тобто . І, нарешті, оскільки , то і . 2). Знайти загальний розв‘язок рівняння . Позначимо . Тоді і для функції р(x) отримаємо рівняння першого порядку . Це рівняння із змінними, що розділяються. Після розділення змінних і інтегрування, отримаємо , або . Звідси і . Останній інтеграл вичислимо по частинах, вважаючи u = lnx, dv = dx. Тоді du =1/x dx, v = x і 3.0 . Це рівняння допускає зниження порядку шляхом заміни змінної . Приклад. Знайти загальний розв‘язок рівняння Заміна змінною: 1) Для розв‘язання отриманого диференціального рівняння виробимо заміну змінною: тоді . З урахуванням того, що , отримуємо: і Загальний інтеграл має вигляд: 2) Таким чином, отримали два загальних розв‘язка. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |