АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Алг «среднее значение»

Читайте также:
  1. I. Методические основы
  2. II. ВНЕШНОСТЬ ЭСТЕР
  3. II. Финальный контакт и пост-контакт
  4. VII.3. Юридическое владение
  5. X. БАЙМОЛДИНА 3 страница
  6. XXIII. Широкая популярность, государственный пост
  7. Аграрный вопрос
  8. Активность личности при слепоте
  9. Анархизм
  10. ББК 15.56 10 страница
  11. Билет № 20 Философская система Гегеля.
  12. В начале сильного ощущения осознай

массив X[1:N]

нач Результаты:

от k = 1 до N цикл

S:= S * (k-l)/k + X[k]/k Sk = Sk-1*(k-l)/k + X[k]/k

кцикл [k = (1...N)]

Xcp:= S Xcp = S

Кон

 

Этот алгоритм обычно считается ошибочным (?!). «Ошибкой» в этом алгоритме считается отсутствие присваивания S:= 0 перед началом цикла.

Разберем результаты выполнения алгоритма на первых трех ша­гах:

S1 = S0×(l - 1)/1 + Х[1]/1 = S0×0/1 + Х[1]/1 = Х[1]/1;

S2 = S1×(2 - 1)/2 + Х[2]/2 = S1×1/2 + Х[2]/2 = Х[1]/2 + Х[2]/2;

S3 = S2×(3 - 1)/3 + Х[3]/3 = S2×2/3 + Х[3]/3 = Х[1]/3 + Х[2]/3 + Х[3]/3.

Можно утверждать, что на первых трех шагах результатом является среднее арифметическое обрабатываемых чисел. На основе этих примеров можно сделать индуктивное утверждение - «на каждом очередном k-м шаге выполнения цикла результатом будет среднее арифметическое»

Sk = Sk-1×(k-l)/k + X[k]/k = X[l]/k + X[2]/k +... + X[k]/k.

Доказательство этого утверждения проводится с помощью мате­матической индукции. На первом шаге при k = 1 оно уже доказано. Допустим, что оно справедливо на (k -1)-м шаге

Sk-1 = X[l]/(k-l) + X[2]/(k-l) +... + X[k-l]/(k-l).

Подставим его в описание результатов цикла на k-м шаге

Sk= Sk-1×(k-l)/k +X[k]/k.

Тогда результат выполнения цикла на k-м шаге оказывается рав­ным

Sk = X[l]/k + X[2]/k +... + X[k-l]/k + X[k]/k,

т. е. среднему арифметическому первых k чисел.

Таким образом, индуктивное утверждение доказано. В силу мате­матической индукции это утверждение верно для всех k = l, 2,..., N. Следовательно, на последнем шаге конечным результатом выполнения цикла станет значение

SN = SN-1×(N-1) + X[N]/N = X[1]/N +... + X[N]/N.

Исходя из этого утверждения конечным результатом выполнения алгоритма в целом будет среднее арифметическое значение

Xcp = SN = X[1]/N +... + X[N]/N.

Следовательно, приведенный алгоритм, несмотря на содержа­щуюся в нем «ошибку», является правильным. В целом анализ правильности алгоритмов с циклами во многом построен на исполь­зовании индукции.

Индукция - это вывод общих суждений из частных примеров. При анализе циклов она используется для подбора индуктивных утверждений о промежуточных результатах выполнения циклов. Однако для доказательства правильности индуктивных утверждений о результатах выполнения циклов используется полная математи­ческая индукция.

Математическая индукция - это принцип доказательства после­довательностей утверждений Р(1), Р(2), Р(3),..., P(N),.... когда известно, что верны первые утверждения для n = 1, 2, 3 и из истин­ности (n - 1)-го утверждения следует истинность n-го утверждения:

Принцип математической индукции: если первое утверждение Р(1) истинно и из утверждения Р(n - 1) следует утверждение Р(n), то истинны все утверждения Р(1), Р(2), Р(3),..., Р(n),....

Приведем примеры индуктивного анализа циклов для алгоритма нахождения минимального значения в последовательности чисел, который в этот раз действительно будет ошибочным.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)