АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Экстремумы. Наибольшее и наименьшее значение функции

Читайте также:
  1. Assigning Pin Location Constraints (назначение ограничений на размещение выводов).
  2. Cхема электрическая принципиальная блока ТУ-16. Назначение, принцип действия.
  3. For имя переменной цикла from начальное значение переменной цикла by шаг приращения значения переменной цикла to конечное значение переменной цикла
  4. I. ЗНАЧЕНИЕ СОВРЕМЕННОЙ ФИЗИКИ В НАШЕ ВРЕМЯ
  5. SCADA-система: назначение и функции
  6. SCADA. Назначение. Возможности. Примеры применения в АСУТП. Основные пакеты.
  7. V2: Электронные таблицы. Встроенные функции.
  8. А) значение речи для психического развития и причины речевых дефектов.
  9. А) Синтагматическое значение
  10. А) Синтагматическое значение
  11. Активный и пассивный словарь. Историзмы и архаизмы. Типы архаизмов. Стилистические функции.
  12. Аль-Бути неправильно понял лексическое значение выражения «просить заступничество»

В Maple для исследования функции на экстремум имеется команда extrema(f,{cond},x,’s’), где f - функция, экстремумы которой ищутся, в фигурных скобках {cond} указываются ограничения для переменной, х – имя переменной, по которой ищется экстремум, в апострофах ’s’ – указывается имя переменной, которой будет присвоена координата точки экстремума. Если оставить пустыми фигурные скобки {}, то поиск экстремумов будет производиться на всей числовой оси. Результат действия этой команды относится к типу set. Пример:

> readlib(extrema):

> extrema(arctan(x)-ln(1+x^2)/2,{},x,’x0’);x0;

{{ x =1}}

В первой строке вывода приводится экстремум функции, а во второй строке вывода – точка этого экстремума.

К сожалению, эта команда не может дать ответ на вопрос, какая из точек экстремума есть максимум, а какая – минимум. Для нахождения максимума функции f (x) по переменной х на интервале используется команда maximize(f,x,x=x1..x2), а для нахождения минимума функции f (x)по переменной х на интервале используется команда minimize(f, x, x=x1..x2). Если после переменной указать ’infinity’ или интервал

x=-infinity..+infinity, то команды maximize и minimize будут искать, соответственно, максимумы и минимумы на всей числовой оси как во множестве вещественных чисел, так и комплексных. Если такие параметры не указывать, то поиск максимумов и минимумов будет производиться только во множестве вещественных чисел. Пример:

> maximize(exp(-x^2),{x});

Недостаток этих команд в том, что они выдают только значения функции в точках максимума и минимума, соответственно. Поэтому для того, чтобы полностью решить задачу об исследовании функции y=f (x) на экстремумы с указанием их характера (max или min) и координат (x, y) следует сначала выполнить команду:

> extrema(f,{},x,’s’);s;

а затем выполнить команды maximize(f,x); minimize(f,x). После этого будут полностью найдены координаты всех экстремумов и определены их характеры (max или min).

Команды maximize и minimize быстро находят абсолютные экстремумы, но не всегда пригодны для нахождения локальных экстремумов. Команда extrema вычисляет так же критические точки, в которых функция не имеет экстремума. В этом случае экстремальных значений функции в первой строке вывода будет меньше, чем вычисленных критических точек во второй строке вывода. Выяснить характер найденного экстремума функции f (x)в точке x = x 0 можно, если вычислить вторую производную в этой точке и по ее знаку сделать вывод: если , то в точке x 0 будет min, а если - то max.

В последней версии пакета аналитических вычислений Maple 6 описанный выше недостаток команд maximize и minimize устранен. Координаты точек максимума или минимума можно получить, если в параметрах этих команд после переменной записать через запятую новую опцию location. В результате в строке вывода после самого максимума (минимума) функции будут в фигурных скобках указаны координаты точек максимума (минимума). Например:

> minimize(x^4-x^2, x, location);

, { , }

В строке вывода получились координаты минимумов и значения функции в этих точках.

Команды extrema, maximize и minimize обязательно должны быть загружены из стандартной библиотеки командой readlib(name), где name – имя загружаемой команды.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)