АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение рекуррентных и функциональных уравнений

Читайте также:
  1. VIII. Дополнения из самого раннего детства. Разрешение
  2. А теперь мое решение проблемы
  3. А ты? Кому ты доверяешь и что надо, чтобы ты доверял? Кому не доверяешь и почему? На каких критериях основано твое собственное решение о доверии и недоверии? Перечисли их.
  4. А) Решение задачи Коши для ОДУ
  5. автентическое разрешение плагальное разрешение
  6. Аналитическое решение дифференциальных уравнений
  7. АРБИТРАЖНОЕ РЕШЕНИЕ
  8. Архитектурно-конструктивное решение здания.
  9. Б) Решение краевой задачи для ОДУ
  10. БЕСЕДУЮЩИЙ-С-СОЛНЦАМИ. ЛОРАНА ПРИНИМАЕТ РЕШЕНИЕ
  11. В Красноярском крае единый налог на вмененный доход для отдельных видов деятельности устанавливается решением муниципального или районного Совета депутатов каждой территории.
  12. В63. Гомеровский вопрос, его возникновение, развитие и современное решение. «Илиада» и «Одиссея» как исторический источник.

Команда rsolve(eq,f) позволяет решить рекуррентное уравнение eq для целой функции f. Можно задать некоторое начальное условие для функции f(n), тогда получиться частное решение данного рекуррентного уравнения. Например:

> eq:=2*f(n)=3*f(n-1)-f(n-2);

> rsolve({eq,f(1)=0,f(2)=1},f);

Универсальная команда solve позволяет решать функциональные уравнения, например:

> F:=solve(f(x)^2-3*f(x)+2*x,f);

F:= proc (x) RootOf(_ Z ^2 - 3*_ Z + 2* x) end

В результате получается решение в неявном виде. Однако Maple может работать с такими решениями. Неявное решение функционального уравнения можно попытаться преобразовать в какую-либо элементарную функцию с помощью команды convert. Продолжая приведенный выше пример, можно получить решение в явном виде:

> f:=convert(F(x),radical);

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)