АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задание 3.3

Читайте также:
  1. Ваше задание
  2. Глава 15. Задание
  3. Глава 17. Задание Виолетты
  4. Глава 20. Задание. День первый
  5. Дипломное задание
  6. Для развития проектировочных умений: задание 2.3.
  7. Домашнее задание
  8. Домашнее задание
  9. Домашнее задание
  10. Домашнее задание богатого папы
  11. Домашнее задание к летней сессии (2 курс)
  12. Домашнее задание по лекции: Спрос и предложение

1. Провести полное исследование функции по общей схеме. Сначала перейдите в текстовый режим и наберите “Исследование функции: “. Затем вернитесь в режим командной строки и наберите команды:

> f:=x^4/(1+x)^3:

В текстовом режиме наберите “Непрерывность функции”. В режиме командной строки и наберите:

> readlib(iscont): readlib(discont):

readlib(singular):

> iscont(f, x=-infinity..infinity);

false

Это означает, что функция не является непрерывной. Перейдите в текстовый режим и наберите “Нахождение точек разрыва”. Вернитесь в режим командной строки и наберите:

> discont(f,x);

{-1}

Конвертировать полученное значение точки разрыва типа set в число можно командой convert, добавив вторую опцию, например, `+`. Обратите внимание на обратные кавычки, которые набираются клавишей, расположенной выше клавиши табуляции.

> xr:=convert(%,`+`);

xr:= - 1

Перейдите в текстовый режим и наберите: “Получена точка бесконечного разрыва x =- 1”. С новой строки наберите: “Нахождение асимптот.”. Перейдите на новую строку и наберите “Уравнение вертикальной асимптоты: x =- 1” (это можно сделать, поскольку вертикальные асимптоты возникают в точках бесконечного разрыва). С новой строки наберите: “Коэффициенты наклонной асимптоты:”. Перейдите в режим командной строки и наберите:

> k1:=limit(f/x, x=+infinity);

k1:=1

> b1:=limit(f-k1*x, x=+infinity);

b1:= - 3

> k2:=limit(f/x, x=-infinity);

k2:=1

> b2:=limit(f-k2*x, x=-infinity);

b2:= - 3

В этом случае коэффициенты наклонных асимптот при и оказались одинаковыми. Поэтому перейдите в текстовый режим и наберите “Уравнение наклонной асимптоты:”. Затем в новой строке прейдите в режим командной строки и наберите:

> y=k1*x+b1;

В текстовом режиме наберите “Нахождение экстремумов”. В новой строке наберите команды:

> readlib(extrema): readlib(maximize):

readlib(minimize):

> extrema(f,{},x,'s');s;

{ , 0}

{{ x = - 4},{ x =0}}

Поскольку функция имеет разрыв, то при поиске максимума и минимума следует указать интервал, в который не должна входить точка разрыва.

> fmax:=maximize(f,{x},{x=-infinity..-2});

> fmin:=minimize(f,{x},{x=-1/2..infinity});

В текстовом режиме наберите результат исследования в виде:

“Максимум в точке (- 4, - 256/27); минимум в точке (0, 0).”

2. Построить график функции

и ее асимптоту, указать координаты точек экстремума. Оформление каждого этапа исследования функции проделать также как и при выполнении предыдущего задания. Самостоятельно загрузите из стандартной библиотеки все необходимые команды.

> restart: y:=arctan(x^2):

> iscont(y, x=-infinity..infinity);

true

> k1:=limit(y/x, x=-infinity);

k1:=0

> k2:=limit(y/x, x=+infinity);

k2:=0

> b1:=limit(y-k1*x, x=-infinity);

> b2:=limit(y-k1*x, x=+infinity);

> yh:=b1;

> extrema(y,{},x,'s');s;

{0}

{{ x =0}}

> ymax:=maximize(y,{x}); ymin:=minimize(y,{x});

> with(plots): yy:=convert(y,string):

> p1:=plot(y,x=-5..5, linestyle=1, thickness=3,

color=BLACK):

> p2:=plot(yh,x=-5..5, linestyle=1,thickness=1):

> t1:=textplot([0.2,1.7,"Асимптота:"],

font=[TIMES, BOLD, 10], align=RIGHT):

> t2:=textplot([3.1,1.7,"y=Pi/2"],

font=[TIMES, ITALIC, 10], align=RIGHT):

> t3:=textplot([0.1,-0.2,"min:(0,0)"],

align=RIGHT):

> t4:=textplot([2,1,yy], font=[TIMES, ITALIC,

10], align=RIGHT):

> display([p1,p2,t1,t2,t3,t4]);

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)