АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Задание 4. 1. Найти неопределенные интегралы: а) ;

Читайте также:
  1. Ваше задание
  2. Глава 15. Задание
  3. Глава 17. Задание Виолетты
  4. Глава 20. Задание. День первый
  5. Дипломное задание
  6. Для развития проектировочных умений: задание 2.3.
  7. Домашнее задание
  8. Домашнее задание
  9. Домашнее задание
  10. Домашнее задание богатого папы
  11. Домашнее задание к летней сессии (2 курс)
  12. Домашнее задание по лекции: Спрос и предложение

1. Найти неопределенные интегралы: а) ;

б) .

> Int(cos(x)*cos(2*x)*cos(3*x),x)=

int(cos(x)*cos(2*x)*cos(3*x), x);

> Int((3*x^4+4)/(x^2*(x^2+1)^3),x)=

int((3*x^4+4)/(x^2*(x^2+1)^3),x);

2. Найти определенный интеграл , при условии a >0, b >0.

> assume (a>0); assume (b>0);

> Int(sin(x)*cos(x)/(a^2*cos(x)^2+b^2*sin(x)^2),

x=0..Pi/2)=int(sin(x)*cos(x)/(a^2*cos(x)^2+b^2*

sin(x)^2),x=0..Pi/2);

3. Найти несобственный интеграл , при a >-1

> restart; assume(a>-1);

> Int((1-exp(-a*x^2))/(x*exp(x^2)),

x=0..+infinity)=int((1-exp(-a*x^2))/(x*exp(x^2)),

x=0..+infinity);

4. Численно найти интеграл

> Int(cos(x)/x, x=Pi/6..Pi/4)=evalf(int(cos(x)/x,

x=Pi/6..Pi/4), 15);

5. Полностью проделать все этапы вычисления интеграла по частям.

> restart; with(student): J=Int(x^3*sin(x),x);

> J=intparts(Int(x^3*sin(x),x),x^3);

> intparts(%,x^2);

> intparts(%,x);

> value(%);

6. Вычислить интеграл с помощью универсальной подстановки .

> J=Int(1/(1+cos(x)), x=-Pi/2..Pi/2);

> J=changevar(tan(x/2)=t,Int(1/(1+cos(x)),

x=-Pi/2..Pi/2), t);

> value(%);

J =2

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)