АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Статистические свойства оценок параметров парной регрессионной модели

Читайте также:
  1. I. Расчет параметров железнодорожного транспорта
  2. II. Расчет параметров автомобильного транспорта.
  3. III. Расчет параметров конвейерного транспорта.
  4. Абсолютные и относительные показатели силы связи в уравнениях парной регрессии.
  5. АК. Структура белков, физико-химические свойства (192 вопроса)
  6. Активные минеральные добавки. Смешанные цементы, их свойства.
  7. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
  8. Алгоритм проверки адекватности парной регрессионной модели.
  9. Алгоритм проверки адекватности парной регрессионной модели.
  10. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
  11. Анализ свойства вязкости
  12. Анализ чувствительности имитационной модели.

Теорема Гаусса-Маркова. Пусть матрица Х имеет полный ранг. При выполнении условий Гаусса-Маркова МНК-оценки параметров относятся к классу линейных по Y, несмещенных оценок с минимальной дисперсией. Покажем линейность оценок следующим выражением: Докажем несмещенность полученных оценок. Введем обозначение: , тогда можно показать, что справедливы следующие соотношения: , , , . Свойство несмещенности оценок параметра проверяется непосредственно: , , E()=b , E =a. Оценка является состоятельной если: , т.е с увеличением объема выборки оценки более плотно концентрируются около истинного значения. Оценка становится более надежной в вероятностном смысле, и дисперсия оценки стремится к нулю. Для доказательства состоятельности оценок параметров парной регрессии получим выражения для элементов автоковариационной матрицы вектора оценок параметров . В матричной форме =AY, поэтому =Cov{AY,AY}= . Определим элементы автоковариационной матрицы случайного вектора Y: , где -единичная матрица с размером nxn. Таким образом = =( Так как Q= , получим выражения элементов ковариационной матрицы вектора через выборочные данные: , таким образом имеем: , . Как следует из этих выражений, с увеличением объема выборки n дисперсии несмещенных оценок параметров стремятся к нулю, то есть МНК-оценки параметров парной регрессии являются состоятельными.

В качестве эффективности оценок чаще всего используется критерий вида: Е{ }= . Несмещенная оценка является эффективной, если она имеет минимальную дисперсию по сравнению с любыми другими оценками этого параметра в классе выбранных процедур(т.е. является менее случайной). Доказательство эффективности МНК-оценок выполняется путем сравнения их дисперсий с дисперсиями линейных несмещенных оценок . Пусть -вектор несмещенных линейных оценок параметров , определяемых выражением вида , где С- произвольная(2хn)- матрица. Тогда в силу несмещенности оценки и равенства AX= , можно записать: , откуда следует, что CX=0. Определим автоковариационную матрицу вектора оценок : , так как Cov{Y,Y}= I и С =0, A = . Диагональные элементы автоковариационной матрицы-дисперсии оценок параметров. Диагональные элементы неотрицательны, поэтому Var( Var(, т.е МНК-оценка является эффективной, имея минимальную дисперсию по сравнению с любыми несмещенными оценками неизвестного параметра в классе линейных процедур.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)