|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Доверительные интервалы параметров парной регрессионной моделиПри построении интервальных оценок используются специальные статистики с известным распределением. Для построения доверительных интервалов параметров парной регрессионной модели aи b формируются t-статистики, включающие вспомогательные случайные величины: Добавим к предпосылкам классической регрессионной модели предпосылку нормального распределения случайного возмущения тогда статистика V имеет распределение , а статистики нормально распределены. Из нормальности распределения возмущений следует нормальность совместного распределения выборочных данных Yt, (t=1,…,n), а т.к. МНК-оценки коэффициентов регрессии a^ и b^ являются линейными функциями Yt, то их совместное распределение также является нормальным, и a^ - N(a, σa^^2), b^ - N(b, σb^^2). Распределения ошибок оценок параметров: b-b^ - N(0, σb^^2), a-a^ - N(0, σa^^2), действительно E(a-a^)=a-E(a^)=0, E(b-b^)=b-E(b^)=0, т.к. МНК – оценки b^ и a^ являются несмещенными. Дисперсии: Var{a-a^}=Var{a^}= σa^^2, Var{b-b^}=Var{b^}= σb^^2. Следовательно, случайные величины Zb=(b-b^)/ σb^ и Za=(a-a^)/ σa^ имеют нормальное распределение с нулевым матем. ожиданием и единичной дисперсией Za – N(0,1), Zb – N(0,1). Статистика, сформированная по правилу t=Z/ √V/k, где Z – стандартная нормальная случайная величина, а V – независимая от Z величина, распределенная по закону хи-квадрат с k степенями свободы, имеет t-распределение (Стьюдента) с параметром k. Таким образом, случайные величины tb=Zb/√V/(n-2) = Zbσ/√Σet^2/(n-2) = Zbσ/√s^2 = ((b-b^)σ)/ σb^*s, ta= Za/√V/(n-2) = Zaσ/√Σet^2/(n-2) = Zaσ/√s^2 = ((b-b^)σ)/ σa^*s. Представляют собой t-статистики с параметром n-2. Преобразуем выражения для данных статистик к виду, удобному для вычисления. В силу того что σb^/σ=sb^/s и σa^/σ=sa^/s, значения t-статистик удобно вычислять по формулам: tb=(b-b^)/sb^, ta=(b-b^)/sa^, где sb^^2=s^2/Σxt^2, sa^^2=s^2 * ΣXt^2/nΣxt^2. Выражения представляют собой нормированные ошибки оценок параметров и называются дробью Стьюдента. Дробь Стьюдента имеет распределение Стьюдента с (n-2) степенями свободы. Задаваясь некоторым уровнем значимости α, по таблицам t-распределения можно определить критическое значение статистики tкр и, применяя стандартную процедуру, построить доверительный интервал, который с доверительной вероятностью 1-α накрывает значение статистики t: P{/t/<tкр}=2∫0taS(t,v)dt=P{-tкр<t<tкр}=1-α, где S(t,v) – плотность распределения Стьюдента, tкр – табличное значение статистики Стьюдента для данной степени свободы v=n-2 и уровня значимости α. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |